تسجيل الدخول

مشاهدة النسخة كاملة : ٍSemiconductor physics


maan
03-09-2008, 04:05
semiconductor physics

Semiconductor band structure.In semiconductors and insulators, electrons are confined to a number of bands of energy, and forbidden from other regions. The term "band gap" refers to the energy difference between the top of the valence band and the bottom of the conduction band; electrons are able to jump from one band to another. In order for an electron to jump from a valence band to a conduction band, it requires a specific amount of energy for the transition. The required energy differs with different materials.

The conductivity of intrinsic semiconductors is strongly dependent on the band gap. The only available carriers for conduction are the electrons which have enough thermal energy to be excited across the band gap.

Band gap engineering is the process of controlling or altering the band gap of a material by controlling the composition of certain semiconductor alloys, such as GaAlAs, InGaAs, and InAlAs. It is also possible to construct layered materials with alternating compositions by techniques like molecular beam epitaxy. These methods are exploited in the design of heterojunction bipolar transistors (HBTs), laser diodes and solar cells.

The distinction between semiconductors and insulators is a matter of convention. One approach is to think of semiconductors as a type of insulator with a low band gap. Insulators with a higher band gap, usually greater than 3 eV, are not considered semiconductors and generally do not exhibit semiconductive behaviour under practical conditions. Electron mobility also plays a role in determining a material's informal classification.

Band gaps depend on temperature because of thermal expansion. Band gaps also depend on pressure. Band gaps can be either direct or indirect bandgaps, depending on the band structure.