مشاهدة النسخة كاملة : سؤال هام عن السرعة الزاوية
Dr. Sami
17-12-2011, 02:46
الأخوة الكرام أعضاء المنتدى
ورد في كتاب ميكانيكا الموائع (تأليف / محمد هشام صديق) طريقة حساب عزم القوى المؤثرة على الجملة التالية:
http://www.phys4arab.net/vb/ QBZBtAAATSUlEQVR4nO3dXXrcRg4F0Nr/qrIzz0MlGlmCqCabLADkOQ/58qOo0QXWvR2Pxx5/AOCbkT0AABWpBwAC6gGAgHoAIKAeAAioBwAC6gGAgHoAIKAeAA ioBwAC6gGAgHoAIKAeAAioBwAC6gGAgHoAIKAeAAioBwAC6gGA gHoAIKAeAAioBwAC6gGAgHoAIKAeAAioBwAC6gGAgHoAIKAeAA ioBwAC6gGAgHoAIKAeAAioBwAC6gGAgHoAIKAeAAioBwAC6gGA gHoAIKAeAAioBwAC6gGAgHoA2GFsyp7uTLd6MwAnOlAAd+qMrn MDXOT0WG/aE83GBbjIghDv1RM9pgS4SEpkt+iJ0sMBXKdCQFeY4SdFxwK4V KlQLjXMh4ozAVyn5gf2glPVmgbgOgUj+ItSE1aZA+A6pWL3V0W mzZ8A4FIVovaA9LFbnhrAi9JD9h25wzc+OIBtrbthSnwL7c8OI HSDbpiy3shNjg/gs9t0w5Tydm51ggBFftrP6RJ+5Y+VLwZwqVsWw2cr3+DNjxJ4j tt3w7TsbT7iNIEnUA8nv9CalwG41EO6YVrzZh90oMBdPaobpgV v+XFnCtzMA7thuvqNP/RYgXt4bDdM1/7Wp9d9a4CrqYcLv/l13xrgUg/vhum6Q3C4QEu64cNFR+F8gZbUwwf1APAv3fDFFQfiiIF+1MMX6 gFAN8ROPxanDDSjHkLqAXg03bDh3MNx0EAbuuFXJx6RswbaUA+/Ug/A4+iGF511UI4b6EE9vEg9AM+iHl6kHoAH0Q27nHJcThxoQD3so h6Ap1APu6gH4CnUwy7qAXgE3XDA+4fm0IHq1MMB6gG4P/VwgHoAbk43HPbm0Tl3oDT1cJh6AO5MPRymHoA7Uw+HqQfgztTD YeoBuDP1cJh6AO5MPRymHoA7Uw+HqQe4yvhP9iDP5fDf9M4BOn qIjb9lj/NQTv5N6uGGBjDGUA/veecArzp6S32TA0wnpLgB9XBDDrAC3cCTqYeiHCCQSz0U5QCBX OqhKAcI5FIPRTlAINeFGSTgDnN0QDr1UJGjA9Kph4ocHZBOPVT k6IB06qEiRwekUw8VOTognXqoyNEB6dRDRY4OSHdtDIm5AxwaU IF6KMehARWoh3IcGlDB5Ukk7HZxXEAR6qEWxwUUoR5qcVxAEeq hFscFFLEijETeixwUUId6KMRBAXWoh0IcFFDHojwSfL9yREAp6 qEKRwSUsi6SxN8GhwNUszSVhGDIsQAFqYd8jgUoaHUwicIvHAh Qk3pI5kCAmhKySSB+cBRAWeohk6MAysqJJ7H4xyEAtaUl1MPD8 eFvH6hPPeR4+NsH6ssMqcdG5GPfONBIck49MCgf+JaBjvKj6lF x+ag3C7RWIq0eEpoPeZvAPZQIrIfk5kPeJnAPVQLr9tF5+zcI3 EyhzBpj3DJD7/q+gHsrF1s3S9KbvR0gRUqSVAyv20Tqbd4IkGj8Z/XrLn69F90gWG/wFuAJ6l9V9fBV/Z1taD08PEdW8r5uzvb5j+teeuWL7VV5Zxuajg0PpB62Xnrlix1 QfHNf9JoWHi4xeV/0MdX3P1nx6ste6R31Y7f+hMAXHevhz8JRK57IT2pGcM2pgG25H 8xf8VMlqIcflVphqWGA1+V+MP/Vl0m2//KqGRa8xukqfGCvMANwTPoH81/92gcLRq1yFgek/JSD+j/PAdhW4YP5tlfKQD28ZEFkawW4jQofzLe9ONLVc94q704Pca0AN 1Pkg/mG15tAPRwxIqf/K0A7RT6Y/+Sn1937988Z5rpvXU1YAJoAnqPOB/OfHKiB60YVi8AjlPpgvvcV1QPAVUp9MD93kovmVA/A/VX7YL73tdQDwCWqfTA/fYwr5lQPwM0V/GC+91VeGeP0UdUDcHMFP5jv/f7qAeBkNT+YXzTAuXOqB+C2yn4w3/udXx/gxFHVA3BbZT+YX/fq6gHgF5WT99KXPmtO9QDck3p4k3oAbqh48l79uqfMqR7O5Jf2 gyLq18MuKa/bIM66ZK5f/BWKqP/BfC/1EGiUuY1GBT60uLPqIdAlc+eEn/8ItNDiwqqHrxplbqNRgc9aXFj18FWXzP2Y7fufAMW1uK3q4S+N MjecsOy0wGctrqp6+EuXzP1pvIKjAt+1uKrq4f+6ZO6Xebb/EiioxT1VD/9qlLm/zlZqWuC7FpdUPfyrS+a+MliRUYGftLik6uHPn1aZ++JgRaYFQi 1uqHr486dP5r4+VfqowIYWN1Q9tMncn159798H0rW4nk+vh0aZ e2CkFo8gPFCLu6keemTusXlaPILwQC3u5qProVHmHp6nxVMIT9 PiYqqH3f/o1396uneGafEUwtO0uJjPrYdGmfvmMC0eRHiUFrdSPRz5p698w VlOmaTFswjP0eJKPrQeumTuWWO0eBbhOVpcySfWQ6PMPXGMFo8 jPESL+6gejn/N6192zOkztHgi4QlaXMbH1UOjzG00KrBLi8uoHt76sl1fuctFA 7R4KOH2WtzEZ9VDo8xtNCqwV4ubqB7e/cq9X5z+6i2eS7i3FtfwQfVw18xt8ZwBn7W4tg+qh11aLG9qNCo wtbi26iHWYnlTo1GBqcW1VQ+xFsubGo0KTC2urXqItVje1GhUY GpxbdVDrMXypkajAlOLa6seYi2WNzUaFZhaXFv1EGuxvKnRqMD U4tqqh1iL5U2NRgWmFtdWPcRaLG9qNCowtbi26iHWYnlTo1GBq cW1VQ+xFsubGo0KTC2urXqItVje1GhUYGpxbdVDrMXypkajAlO La6seYi2WNzUaFZhaXFv1EGuxvKnRqMDU4tqqh1iL5U2NRgWmF tdWPcRaLG9qNCowtbi26iHWYnlTo1GBqcW1VQ+xFsubGo0KTC2 urXqItVje1GhUYGpxbdVDrMXypkajAlOLa6seYi2WNzUaFZhaX Fv1EGuxvKnRqMDU4tqqh1iL5U2NRgWmFtdWPcRaLG9qNCowtbi 26iHWYnlTo1GBqcW1VQ+xFsubGo0KTC2urXqItVje1GhUYGpxb dVDrMXypkajAlOLa6seYi2WNzUaFZhaXFv1EGuxvKnRqMDU4tq qh1iL5U2NRgWmFtdWPcRaLG9qNCowtbi26iHWYnlTo1GBqcW1V Q+xFsubGo0KTC2urXqItVje1GhUYGpxbdVDrMXypkajAlOLa6s eYi2WNzUaFZhaXFv1EGuxvKnRqMDk2v6kwbk0Wl6jUYHJtf1Jg 3NptLxGowJsaxBnjTK30agA2xrEWaPMbTQqwLYGcdYocxuNCrC tQZw1ytxGowJsaxBnjTK30agA2xrEWaPMbTQqwLYGcdYocxuNC rCtQZw1ytxGowJsaxBnjTK30agA2xrEWaPMbTQqwLYGcdYocxu NCrCtQZw1ytxGowJsaxBnjTK30agA2xrEWaPMbTQqwLYGcdYoc xuNCrCtQZw1ytxGowJsaxBnjTK30agA2xrEWaPMbTQqwLYGcdY ocxuNCrCtQZw1ytxGowJsaxBnjTK30agA2xrEWaPMbTQqwLYGc dYocxuNCrCtQZw1ytxGowJsaxBnMhdgPckLQEA9ABBQDwAE1AM AAfUAQEA9ABBQDwAE1AMAAfUAQEA9ABBQDwAE1AMAAfUAQEA9A BBQDwAE1AMAAfUAQEA9ABBQDwAE1AMAAfUAQEA9ABBQDwAE1AM AAfUAQEA9ABBQDwAE1AMAAfUAQEA9ABBQDwAE1AMAAfUAQEA9A BBQDwAE1AMAAfUAQEA9ABBQDwAE1AMAAfUAQEA9ALuNITpONr7 Jnkg9APtVCK+b+X6k6Ydsx8Bu6cl1P+GR5p6zHQO7qYfTqQfgD tTD6fzgEnAH6cl1P9//p+n0Q7ZjYLf05LofP7gE3IF6OJ16AO5APZxOPQB3UO1HyW/gpzNMPFtLBSCgHgAIqAcAAuoBgIB6ACCgHgAIqAcAAuoBgIB6g B38/794Ds867KAeCJV9MN4ZrOhbgprKpgC5yj4Y6gEWKZsC5Cr7YKg HWKRsCpCr7IOhHmCRsilArrIPhnqARcqmALnKPhjqARYpmwLkK vtgqAdYJPz94qGy40/7iTcHbu+dy8aNlX0w1AMsUjYFyFX2wVAPsEjZFCBX2QdDPcAiZ VOAXGUfDPUAi5RNAXKVfTDUAyxSNgXIVfbBUA+wSNkUIFfZB0M 9AHAy9QBAQD0AEFAPAATUAwAB9QBAQD0AEFAPAATUAwAB9QBAQ D0AEFAPAATUAwAB9QBAQD0AEHhiPYxN2dMBbdw7TNq/gW3by3td9vsAkoXJ8M+m7mHSadYXnVUJP8l+f8AirzfB6xqFSf X5Xnd1K3yX/Y6BS3zc8bMq4deqyH7HsaJjvW59K3yXfQbACT5u9NWt0KUnak2 zS0IPbMo+D+CgeYXXt8J3pcKkyhx7pZXApuxTAXYbNYrhsyJhU mKIXZIb4AXZJwS8ZF7Y7C6IVQiTTlmWlveHZJ8W8KN5SbMr4He 5YdIjxdIy/m3ZJwf8ZV7M7NjfJytMGuRXWrSfJPv8gH+NbsXw2fowqR5eydF +kuxTBHp3w7Q4TOomV3KiXyD7ROGh5gXMzvZzrAyTopmVFuEXy z5XeJxxl2L4bE2YVAys5Ai/WPbpwoOMO3bDtCBMyqVVcngvkX3G8Ajjvt0wXR0mtaIqObYXyj 5puLlx926YLg2TQjmVHNjLZZ833NZ4RjdM14VJlZBKjuok2acO NzSe1A3TRWFSIqGSQzpV9tnDrYzndcN0RZjkx1NyPBeQvQG4if HUbphOD5P8bErO5gKyNwA3MdTDued57rfb/fKMMTQEvG08uxumc8MkM5iSI7mYxEVAd0M3/OfEMMn7lcT5JmsX0NrQDX87K0zUQyFZu4DWhnr421lhkhNJyTF cWMo6oK+hGyKnhIl6qCVlHdDXUA+RU8Ik4zeoY9P6jUBTQzf87 P0wUQ/lrN8INDXUw8/eD5Plv3kpL1i8FOho6IbfvBkma3/nUl62ci/QztANr3knTNRDUSv3Au0M9fCad8JEPRS1ci/QzlAPr3knTNbFUHLcNrRsNdDL0A17HA4T9VDXstVAL0M97HE4T NRDXctWA70M9bDH4TBZlEHJQdvWmu1AI0M37HcsTNRDaWu2A40 M9bDfsTBRD6Wt2Q40MtTDfsfCZEUAJUdscwsWBF0M3XDUgTBRD 9UtWBB0MdTDUQfCRD1Ut2BB0MVQD0cdCBP1UN2CBUEXQz0cdSB M1EN1CxYEXQz1cNSBMFEP1S1YEHQx1MNRB8JEPVS3YEHQxVAPR x0Ik8vTJzlcb+HqHUELQze8Z2+YqIcGrt4RtDDUw3v2hol6aOD qHUELQz28Z2+YqIcGrt4Rr7COdEM9vGfv06seGrh6R/zKRioY6uE9ex9d9QC0kR2wvQ31cD9X74hf2UgFQz28Z++jqx4a uHpHvMI60g318J69T696aODqHUELQz28Z2+YqIcGrt4RtDDUw3 v2holfVKO6BQuCLoaGOOpAmKiH6hYsCLoY6uGoA2GiHqpbsCDo YqiHow6EiXqobsGCoIuhHo46ECbqoboFC4Iuhno46kCYqIfqFi wIuhjq4agDYaIeqluwIOhiqIejDoTJovRJjti21mwHGhkaYr9j YaIeSluzHWhkqIf9joWJeihtzXagkaEe9jsWJusCKDloG1q2Gu hlaIg9DoeJeqhr2Wqgl6Ee9jgcJuqhrmWrgV6GetjjcJgszaDk uG1l5V6gnaEhXvNOmKiHolbuBdoZ6uE174SJeihq5V6gnaEeXv NOmKyOoeTQbWLxUqCjoSF+82aYJCRRcvSWt34j0NTQED97P0zU QznrNwJNDfXws/fDJCeMkgO4sJR1QF9DQ0ROCRP1UEvKOqCvoR4ip4RJWh4lx3BJ WbuA1oaG+NtZYaIeCsnaBbQ21MPfzgqTzEhKDuNiEhcB3Q0N8Z 8TwyQ5lZIjuYzcLcANDA1xajf8Sa+HPxpCN8BJxrMb4vQwyc+m 5GwuIHsDcBNDPZx7nud+u2OS4zlV9tnDrYynNsQVYVIlnpJDOk n2qcMNjec1xEVhUiihkqN6uezzhtsaT2qI68KkVkglB/ZC2ScNNzee0RCXhkm5nEqO7SWyzxgeYdy9Ia4Ok4pRlRzeF8s+ XXiQcd+GWBAmRdMqOcIvk32u8Djjjg2xJkzqBlZykF8g+0Thoe YFzI70c6wMk+qZlZblp8o+ReAO/xmxOEwaJFdytL8t+/yAf43ODbE+THqEV3LAvyH75IC/zIuZHfX7ZIVJp/xKy/hDsk8L+NG8pNmx/7vcMOmXYml5/7LsEwJeMi9sdgXEKoRJ1yxLy/5N2acC7DbqNUSRMCkxxDHJVfBN9nkAB80rnF0K//xT4z8aPlSZ47C0Nvgk+wyAE3zc6KxWqBYmtaZ5h1YATrGsJ4qH SdGx3qEVgFN8vvinV0L9MKk+35tUAnCKMBleb4KOYdJp1rNoAu AU9w6T9m8AgCuoBwAC6gGAgHoAIKAeAAioBwAC6gGAgHoAIKAe AAioBwAC6gGAgHoAIKAeAAioBwAC6gGAgHoAIKAeAAioBwAC6g GAgHoAIKAeAAioBwAC6gGAgHoAIKAeAAioBwAC6gGAwP8A1Dcz H3pPxo0AAAAASUVORK5CYII=
M=F1 L - F2 L =(F1 - F2) L
M=1/2 P A V2 (CD1 –CD2) L
M=1/2 π R2 V3 (CD1 - CD2) L
حيث: M - محصلة العزوم المطبقة على الجملة
F1 , F2 - القوى المؤثرة على أنصاف الكرات في الجملة.
L - طول الذراع.
P - ضغط الهواء المطبق على المساحةA المكافئة لنصف الكرة.
V - سرعة الريح.
CD1 , CD2 - معامل الإعاقة لأنصاف الكرات:
CD1=1.42 - التيار يواجه الجانب المقعر.
CD2=0.38 - التيار يواجه الجانب المحدب.
وبالرغم من البحث لم أجد أية علاقة لحساب السرعة الزاوية لهذه الجملة بفرض أن الكتل معروفة.
يرجى من أعضاء المنتدى الكرام المساعدة.
Dr. Sami
17-12-2011, 03:03
لم تظهر الصورة ولم أستطع إرفاقها بالمشاركة (أعطى رسالة فشل رفع الملف)
الصورة عبارة نصفي كرة قطر كل منهما R متصلتين بحامل بشكل متعاكس (السطح المقعر لأحدهما مواجه للريح والأخرى سطحها المحدب مواجه للريح.
تدور المجموعة حول محور الحامل.
L - هي طول الذراع (من مركز نصف الكرة إلى محور الدوران)
الجملة تدور نتيجة فرق مقاومة السطحين المقعر والمحدب للهواء.
Dr. Sami
29-12-2011, 04:08
http://www.phys4arab.net/vb/ QBZBtAAAgAElEQVR4nO29V3sj15X9fZBIMHdLakkejT0zfvyt5 8pz4WdkWx2YA0iQCMwdJFty0Dh3qxMDMiqf92L9sd8SCKJJEKg qAOt30U8RRAOFQnGvc3ZUmhBCCLmCCvsECCGERBHKAyGEkA5QH gghhHSA8kAIIaQDlAdCCCEdoDwQQgjpAOWBEEJIBygPhBBCOkB 5IIQQ0gHKAyGEkA5QHgghhHSA8kAIIaQDlAdCCCEdoDwQQgjpA OWBEEJIBygPhBBCOkB5IIQQ0gHKAyGEkA5QHgghhHSA8kAIIaQ DlAdCCCEdoDwQQgjpAOWBEEJIBygPhBBCOkB5IIQQ0gHKAyGEk A5QHgghhHSA8kAIIaQDlAdCCCEdoDwQQgjpAOWBEEJIBygPhBB COkB5IIQQ0gHKAyGEkA5QHgghhHSA8kAIIaQDlAdCCCEdoDwQQ gjpAOWBEEJIBygPhJCxo1ar4cC2bRxUq1UcnJ+ft/3KcRzP8yzLsm3bsiz/67iua5omDtoe11rjV1rrcrmstTYMAw/iccdxtNaWZTWbzX5/vv5AeSCEjCmmaTYaDbH4rus2Gg0c12q1ZrMJCw6zDqAZYuLlwW q1CkmoVCp4sFKpyKtpn/zI//U87+LiYmAfrg9QHggh44h/KwCbXiqVPM+DJADTNGH06/W61tqyLNlb4Gli9LXWnudprd+8eaN9O49arSbHlmX5lQaPaN9W JmpQHggh44jjODDxruuKBddaV6tVrO5h6Ov1epvz5/z8HGYd/0s2AeImevv2LX7rOE69XvfvM0C5XPY87+zsDD9CVyII5YEQMna IHrx//x7HsOPiDoIAiGU3TdPzPNd1DcNIJpNKKaVUIpHAwcTExPT0NI7 l+RKNQHyiVCrh1fwbjqs/RgrKAyFk7DAMo23NDjONByUIkUqlYPQnJydxMD09DUeT9sUk8G Tbtj3PUy1EMCYmJuT1G41GqVTSLfnx71oiCOWBEDKmXF5e4gBm GvlFMPHYGcgzHccxTRN64HcKeZ6HyAH8VIhM+FOetNaNRkMp9f HHH8sL4n2xF9ER3kBQHgghYwfW+/6FfLlcnpubU0qlUimkseqWHffHk/1i4EckARqjfdFsf/qTUmphYUEpJVuQqy8VHSgPhJBRxnEc2Pr3799rn/mWWgRxBAVwMq7rIjkqnU7D9WQYBhRCwhUS52hLjvJnQwVwqpry QAgZYSQNyY9hGDDE8Xh8bm5Oa/3u3bvATgk7EtM0Ye4R2LjOvyTxbcuyGo3G1c8yUCgPhJARR3xE 4jXSWieTSdM0pYqtrRx6oJimKc4lCMPs7Ozr16+11o7jlEolqa +G+8t/kkFGsykPhJCRRdKT5KBUKimlYrGY5LDCLtu23VazNghs25Yqim q1Ck16+fKl1tqfF6u1dl1Xtg62beNYajWCgfJACBlZbNtGyMF1 3YuLi3g8Pjk5iV9h2Q5jjfq1IE/M8zx4ipAHBe9WrVaLx+NKKQmQyD5DPogOMB2W8kAIGX3S6fTc3 By8NLVaTTYT1WoV9rdWqwXg2W82m3AQYcdg27ZEFCqVikiUP1T eFpbwPC+AXQ6gPBBCRhasyv3rcVhb13Xh1gfB90yt1Wr+fnz+y IcIhpy2bBekUCMYKA+EkFFGKSXW3x+alg3E5eUllu0BlKfB3Mv 5QAZk1+KPTGCLMDc3h/+C04ak+RvBDhTKAyFk6JGUHsMwxEXjum645rUvJJNJfLRms+nf cARQD0F5IORaVFfCPjvyI9qSPpvNZiqVCtc5c3cgdW03myQy6Q HXQ/AWJ+T/51YCQLWIDlIZ4DiO67qvXr1CIzwdamj37sjZKqUqlYrneRhTEU w9BO9pQnRfTDx1InSwpk6lUtAGLKtDTAztC81m0zTNZrP50Ucf XbeNGFA9BG9lMr4MyKBTJ4LHdd1qtdpsNpVSlmW1OVvCKivrF/g479+/r1arCwsLGEcagOzxDibjSDDmmyIRGDD68/PzupUXdH5+HnpTiruDaj7949Rb3FQBOM1475LxIniTTZEIAMSc lVIy+g2Ph9vSrl9gY6S1RnvXZDIZTMiddy0ZI0I001SIQXO1zB gHITbEvjt+JxKagaNcI5iEXd6yZCyIwhI+CucwGsjaGZuDer0+ AvUNtwWzIrTPddb32m/erGT0iZRRjtTJDB2e5/3www9aa8MwxPoH5myJDp7nNZvN+fn5crksdeDcPRByOyJojiN4 SsMC/EJYNWPrEIXWdaGAjt/T09Na63q9PghF5G1KRpnIGuLInljEaZuvaZomGnSPQH3DrcC0U a01Kjz8LrU+wnuUjCwRN8ERP73IAhmwLOuHH37ANZRdwrDXN9w WwzDK5XIsFsOmqu8D73iDkhFkWILAw3KeUeP8/Fxr/fnnn3ueV6/XA2syER0wREi3oiypVOrNmzd9fxfemmQEGSKbO0SnGgWkoOHi4 sJ/6UajvuHmIL1V3Gi4FHIR+gVvTTJqDJ3BHboTDh3DMNLpNI6xk9 BDXt/QA34xqNfr6XSamUuEdGNITe2QnvbgaFsIw/C5rgv3erValSsmY+DGCn+YwTRNy7ImJydlbjYO/AOre3sX3pRkdBhqIzvUJz8I/LFlHMswHFyr8/NzPC4ep7GiXC77RbRcLqPllJ9KpSJRih7gHUlGhBEwryPwEfqI 5CNdXFz448yXl5eJRKLRaGB1PJ7aABzH8TzvzZs30nIKwflGoy GjUvUdqql5O5Ih4zobOgK2dQQ+Qh+p1Wp+r0ipVKpWq5Zl4SrB/AUwHTqaQA+u1v3JLVSr1crlMgZF9PwuvB3JkNExGXRkDOvIfJA 7IotfuI9c18WBXJ9KpYLdw12cJ8NOo9FAVObdu3fiaLp6C/UsorwXyfBxVSFGxqqOzAe5IxJ6xeIXRvD169eJRMIwDKlvGFuk atqfrXRxcWGaplLKcRy442zbvkt5IO9FMpT4zeiImdQR+zg9Uy qVDMMQ/9Lbt28fPHiAXYU4VSSrddyQy+I4DjYHkMy2PZbruqZp+uMQt4I 3IhlKKA8jj+Rl1ut1rIVxZeB2l7YZhmGMdoF0R7B1kLa1/iCE4zixWMyf08XQNBkvxL/U0ZgOe7OKoT75vgDrhswcrJTL5TK675Hu+KP3lAcyplyVB+Ujv PPqA8N+/n1BjJppmrVabWZmZhy67N0R0zThZYrH4z37lATehWRY8W8gRkM V/IzSZ+mNly9f4kD86X3vSDqq+KvKNaumyRgykqogjOSHui2e571 9+1ZrXa1WY7FY2KczBCBg4zjO7Oys67q2bd8lMMNbkAwxo21DR/vTdaeta5Bt2+l0uu+zlEcYpdTVzNdbv0j/zocQ0k/GWR7EqGGQwzhfitviOM6rV6+01slkEqHpnmM2vOiERJQxt4nv3 78XkYjH44xL3wTXdRGRRn2c1trzPGlleFvG+v4jJMqMuTyIHoi lG+fue7cCgy5w0e7Slmqs7z9CIs6YK4TW2nXdRCKB+OrdMzXHA YQccK3uOEVu3G8+QqIM5YHycFsoD4SMBZQHysNtoTwQMhZQHig Pt4XyQMhYQHmgPNwWygMh48KYKwTl4bZQHggZFygPlIdbQXkgZ FygPFAebkVE5cE0zTt2gCJ+UM9Sq9XQV0DfofMiuTuO40gHwCC/iPGUB5iRRqMhH9/zPPZcujlyre5y//TtzsPkP62167qGYUhtN+mNZrPZ1ksL3Yzd8SCkq96NRCKRSqVi sdj09HSQJvu69wr7KxosumVJPv/8c+1r7k26g0tn23aj0cAo1lQqFYmeS+6P/6qbzSZ3Ej2jlPriiy/UFRJjwNVPHQWmpqbk+N69eyGeiZ+wv6tBEYvFlFJzc3NKKeml4 R+ZSTrieZ5lWdJIo1arTU1N9fxqfZOHv/71rzio1Wqe56lWN6h+vf64MTMz85e//EV+lEEo9ngQ0lXvhlLq008/FZsV5Pt2fDzsr2iw+D+m1rrRaNylMfVYgb0C5mTAIxqVcUByHk opOgrvgmi+v6PW+/fvQzodorXWSqnZ2dkgtUGPa+wBnJ2daa1N02S71hsCC4xopWma 7t38tH2789zW6AlsABU7LN4Nv1HwPA/zY8kYMp7yUKvV/OtL7J45TPTmnJ2d4XKZphn+7sFxHNu24U26uLj4z//8T5n0RHpgZmYGE9jlq3UZ7R9LxlMeBMMwbNumK+LmtC3K77KB6 Nud53cXNptNpRRt2V1QSsmGGlcSP3rjQZiXPkp00Yawv6LBAqO Gex5Rh7vMLRg34MKp1+uQ1UhkLgF8l4lWJQv5INhm+b/IUqk0NzeHx7FDhDOR0blxY8y3DiRc+nnzSdrZxcWFaZqTk5N9f PFRRXbNzWYTK6a3b9/Ozs5CG0RiLy8vwzpDEiKUBxIifbv5PM9r28IopRh+uCEY/mcYhucrhW/bTXuex7zvcYPyQEKknzefmDPTNM/Ozn72s58x0+AmuK4rlw5Dw5PJpGmaCDHZti35rPTXjRuUBxIi/b/5xIQxOn0TkJiEcBwecV1XjIJt2xKjY+r3uEFtIOHSt/tP8i9lIcyb+yb4owtyPDc3h1i0lDtYlsWtw7jBvyASLv28/8SWwRnCm/smtFU21uv1i4sLpZQ8aFlWo9Fgr9YxhH9BJFz6f/8hHF2pVCYmJhBxJR8EGatSV9gWmpZ9A6/nWEF5IOHSz7K4q5lLupXt2mw28ds7lmmMMFLr6I89kLGF9wAJn T7fgu/evdNa//3vf/9/r+67xf0DDJjRJLiuizAD5KFSqcTj8bBPioQP5YGETj9vQYzsEJ fImzdvPv/8c9d1z8/P8Yht25ZlMXm/Dc/zpHDadd25uTn2DxhzqA0kCvQ5NA3XuaRpyl1eq9Vkx8DWcn7gb UPk2XXdSqXCanNCeSBRoJ9V0/Jvs9kUAVBKodRLa+04DvxLd+xCPmJgr4ANxL179169ehX2GZEw oTaQiNC3G1Eiq1LnValUTNOMxWJ43N9gg63lBETp0bW4UqkkEg nN0P14Q3kgEaGfNyLa8Lb5zdGYWlIz6/U6y7v8mKbpvyBKKQnskzGE2kCiQ587tsJrJElKjuNMTExISRc3 DR3BRUN4hmlLYw7lgUSHIO5F3PGu68p4CsYeBFS6Ibc1mUxqX3 sSMm5QG0ikCE4eBKYtXUUSveBo4nSH8YTyQCLFwG/HUql0//593crPqdVqjD20cXZ2prV2XXd2djbscyGhQW0gUSOgOzKRSJTL ZenZR/ygImR2dhaNSeBoImMFtYFEkCBuyrOzM9z9juPIWLQA3nco6Dge g9dnrKA2kGgS3H0pfwOsmvaDehG5OOVymUUPYwW1gUSWgd+aju MgW8myrFQqpZmZcwUYiH/+85/4UQoMycijlKI8kMgy8FsTOayoeIjH43AuMTot2LaNSmnt21dRQ ccBCgOJOAO/QbF1wIrYcZxYLOZ3nsDJ3mg0cDDC9RC2beMzytRoZK/CRti2LZsGf/cRMqpQG0j0Gfg96nmef16mxKh1a/hotVoVwRj5VbP0NodUeJ734MGDt2/f4kHTNA3DYObSyENtIENBELep9FxC4qZSyjRNaeOqW66nsQpZV yoVwzASicTr16916wpgp6U5LmmkoTaQYWHgd+rVyTb+FCZMl2s 0GuPQjgnlb/76D9lLYXclu6jxkcmxgoFoMlwEcbM2m03TNMvlMuLSutMCCs6W kW8mAbGUFhqWZVWrVb83yTRNuUpklKAwkKEjoNA08DwPu4RKpY K/lsvLyzdv3nieNw7J/gg+l8vlRqORSCT8WmjbtnjbWBM3YnDTQIaUgKqmr7bTmJ+f96f ouK472hk7kruF6LTYC6iCXx3HQSnHBAoDGWoGfu9KMhKsf7PZh PlrNpuTk5OWZfmzlUY7JCv6p5SCl8myLH9diDDCCb7jgGoR9ok QcidCu4Nt2240GtPT0/4HXde1LEu8K3IwRIFr13VFAsH79++1byocrIbneX63GxkBqApk EEh2DwwIjGQwbx3+rayUksRWedCyLDyIbJ8hApLWbDaxV3jz5o 32VTmI7UA4mhlK0eSGhl79mGDOjYwVWERKcRjsYWD1YaHd05g8 iphEPB6vVCqe511cXLx+/VqW3jgYOl98WxClrSRQt7RBs7lI5FFdCfvsyOgDE+G3hEH2ZAv tFsdHxS7p6l+abBoqlYrjOEPkXPI8T/Tg7OwMWar+tqwSpWeAgRDyQVA5q1ubhiDXlGGugKQ9X7PZTCaT 6C2Bymqttb/VRIgneVtwtv6a8Hq9jlpx13URgZCUVjqXCCFdgBjIjmFcnEv+D QE+7b//+79jfY0yOq312dmZ67rSw26IQAO+arVqWVY6nUZP1nK5LDsG27 YlWE0IIR2B6YPdEK91YKVRYe4eJLlTa31+fo4flVISyNUt8Rwi M9p2qkopKL+Mc6hUKs1m03Vdlr8RQroDF8vl5WU8Htdav337Nk hPe5iJrfrH+Z2yY0qn0/LgMI6nxsn785TEaSjepCGNuhNCAsa27Vgslk6nxZ4EphBRzL6w LEsuxFV5wKXBniPE6C7eGglX2jewwT87GgfDFTshZExAxzPd+l M1TVOaY4ZSptpoNOSNcGL4sVQqffbZZ0iWgzExDCOY+rDIyQMW 1KZpinlFV1ettWVZCOJLVUi4q29/0yRxCyL+PDExobUulUpMTyIkgkg6EMzu7Oys1hq59TqMJjdwIo mnXbe0wbZtZLUkk8lmswkXkzDo+rCIyoNkgvqHQKDETEcs4cef d4uTV0qJcwyyMUSxE0LGh7dv3z548AAKIaO6dEgtMrFjkAROdF vQWs/Pz5dKpZmZGe3zSQRTHxY5eZAULtM0G42GUmpubk6EtFqtSk9sy 7JC7NFkmmalUpGzlYYZkDR5mswQJYREikqlEo/H4cp2XfcnP/mJ4zghNtiHoRBzcXZ21mw2oQeGYcTjcbgrFhYWRLoGXR8WOXkA/n5E5XLZX6QKSQiydPCDWJYVj8fbztAwDPmmOcKBkAiCv1mlVKV SSSaTeDCs8VwSpPTvA6anp2E9kNKJqMPCwkIw9WGRkwepGrNt+ +9//7v2KQFEAja3Xq+Huyp3XRdarZRCpKFWq7muW61WpXMWvrCxGpJ KyFBQrVYXFhZqtZphGGgMWq1W4/F4WMN9/dbMsiwMG4Zu4XxSqZQ8IbD6sMjJAxBnPb4Y0zRx4DjOxMREo9G AwX358mWIJylbP9xS8t34b6bLy0tGpwmJIPjjhXNCtyThwYMH/vW4YRh+X9NAgUK0TRrWWlerVYSmJZyug6oPi5w8eJ4nF0j2DYZ hyNbJNM1EIiG6GhbYNDSbTX+7WfH9YQ+Ib062EYSQiCDagGP8q cqCT/LU9ZUOm4PDtm1pwFetVufm5mQcjuu6fg0DAdSHRU4ergNLcn9K 68TERFsoWA78TkNR1A9Kqz9CYBiGPF9WE1rrycnJeDzell5GCI km4nXQWnueB2uLJjfAdd1EIiFVutq3MJdVXQCjWcRSwbU+NzcH iy+bg0Qi4fdD1Gq1VCrlt2mD8GAPjTwAyCmSl77//ns8iLCwUsqvBGiEp1s5Trp13b1rEN/f+fm5f5cnAYZYLAYBr1arjCUQMkTAP6NbpXBd5AGuJNWa2eX3W wwUvwJVq9XJyUnDMMSLflUeAM5T1rV9T4EZGnloC7yIgcYeEAt 8OJ1isZg8zb8ouAl/+9vf/D8mEolPPvlEcsvkdSgPhAwFfovZbDYty/r888/bpty37R601kop/38Mpm7p3bt3EIlUKtVW43VVHmQUgkjIIBgaedBaO44jSo4vD33 ucHWgE41G4+LiIplMYj8xMzOTSCSwvegeIsbzUSMzOTmJHy8vL 6VmG/zwww8D+nSEkAGB+oBKpeK6biqV8i802+TBNE0YmVgsVq/XA8srgccCMoBHms1mqVTqvntATbW4wvquE8MkD1prx3EkXANwX K1W/UEbf8TGsizbthHb6QJeRzxR2rdkME0TuxPJuGUrPUKGAqSby49 TU1Nt6Y5t8nCdmR70eV4nS9fJg7+o+9NPP202m37b1S+GRh78k gDrLGle+EYxmhQBg47tsm9y7aAxjUYD289//vOfsscUtaBniZAhwjAMx3HK5fL8/PzVNKSrzqWOTp5guOrU6rJ7kNqvWCzmz3nt5/kM4kUHB1buuEyYmoBjBKt1SxjwoOu6zWYTX7zUTzjXgDI3/x4TL4gbRRKZqtVqm7uJEBJZ/MtEyQ31xxLa5OG6EPGgz/O6kHiXzCXdWiifn5/fu3dPD6A91NDIg796wHVdv9rLlye5SfjRv8yXRhdd3gLX2rZtS aL1b/H8eze2USJkWJBGmbpTa+42ebguwTQAOibUdtk94DyxGp6YmBjE eQ6NPBBCyHW0mU4pVsWSrlqtShFym3/pqnOpY3kanozHa7UaFu89LBM9z0MSDUTLv1npWObWPXMJoKnE5 OQk/rvjODiQT9pzbi7lgRAyClwd0iDxW2jD+fm5f14AuCoPHZtbQA8 ajQa8QHiFns2uPwnTdd3Ly8vrmmR02T34Z9fjx/n5+bY3qlQqdxkFQXkghIwCspa/uLjwRxcuLy8TiYTkm7Q1e+6YuQT8rfG0T36QD9lz+uLFxQW0Qe z7gwcP9DUt9rontuIJb968gSvM38LP71rvueqb8kAIGQVqtZp/OV8qlarVqkwmhrmUHBbh6u6hY2NtCWvLlB7d0+5BvF6Y0CBtPK 5r0H2dPEAPrnq3xIdWq9XK5bJpmnfpCEJ5IIQMPbJYhpHF6lv7 zGWlUsHuoc3Zcp1zqW0sz+zsrD/e4HlebxmMEtWQR+QMdafxPt13D41GA3rz7t07+a3/BcFVUbwhlAdCyNAjoVoslmE0X79+nUgkDMPoktVzVR46DvWEi0 m2FzjouZkrBl/iVGUoQMfhoNfJg+d5bV2idcttpZRyHEeiF3ep4aU8EEJGgVKp5 O+ghznS/g2B1to/UBq0yQO2CBAbPNlvlKU3j5Ti3vYkZSGPV5icnLQsS07PsiyYe9 lGXCcPfg8YXhMS2LZnQj1Az5W8lAdCyCgga/l6vS6z33XLTS89Pf29+nWn3UOj0RBDDMsLI+u67uzsLF5N32Hr IApxfn4+OzuLULlfJOSgi3NJVApy4g9COI4Ti8X8OVqjE5puNp vyLeIR/3eJBxuNRs/q3UfE+eh37eGmkbJtHUizeEKIP9nftu379+/fpMF1x46tHUHPZqUU3qhnh74/3dZvKDrSPfZwFXlB2UDI2/VA5OQByMRmrXW9Xsf3gd1TtVoVb1qIU9ggy7Vaza9e+ErQR1b7 9COYhsCEjC3+tjr6x3Vw3bmhPMg845mZGXmwt1Z9srTFC3avdr 6tPMgLStOHu7R4iKI8SNNsmGB8zX4NlOSwKHTHk0JKpVQ6nZ6Z mRHRQh8OtnclZNC4rist/V++fDk1NXXDNdnNdw9a68vLS8So79gCz7IsrB0/aLt7kAd52Xfv3t2xh2sU5QFXBCUqSqlUKiX9UnBNJZ0rRFAygz ULTuajjz5Cb3A8ARWP2Pdw1jQhASCScPN1/Q3lwW9nZanag/H1+7vev38vPT+ue/5t5QEvZVmWvz6j5ylykZMHuA7fvXsnUzwxA67taZBHCRMFj6S4 wfSjsGV2dlZrPTEx4V+5BDbKnJCxRbbppmlCGzDl5YP/8VbyUKvVYJdM0+zZ5radlb/151V6iD20idZdArSRkwftWwJAFRYWFpDMq7W+vLx88+aN53lR8 NhYliVnkkwmS6XS1NSUaZrJZLJWq6H7IxxlUXCCETLCXHU1o5//Tf7jzZ1LsjbXWpfL5bb+HDcELf9umAHVg3NJXvDy8lLaC/ZGFOUBNJtNdJiCMLSN8nBdN9xV+eXlpTiOcIbv3r2bnp7Gb/3dg6X+hRAyOPzdsG9e0nxDefBPfajVaj0vT/17DglK9z1zSf844j06ziXQaDQmJiZM02w0GpOTk1gIoITE78fv +/C8WyHzIdLpNG5NqALEIBaLYcRQuNm3hIwJMILSVu+GnUpvtXvw T52543wFycPUXTMbbysPMrXs7meoQ5QHkWJ/MQjMvUQdcOzvmjI3N6d9M58DcNpc10det4oqpZsjqlHkmZh47s 9MkACU3A09qzohpC/cSh6Cp7fMpX4R8u4BCt9oNNr2AYj0yjFSlQzDmJyc9Ef5g3Had Okjjy0CvrZ6vd6Wg4sfz87O/FEy1M0zl4mQKEB56EKY8uDvPIWD169f40KIAf3hhx8+/vhj+drevHmTSqW01s1mM7CZzx37yL969UprHY/HkSZRrVbL5bLEHnRrbq0EIfA02e5ZlsVaOUJCh/LQhTCdS47jiLn0OwonJib8eQiwsKVSSfYK8nUGM/O5Yx95/eNIA0QuFoshYI52j7VaDTWW8jFlGyEdYAghIUJ56EKYuwd/b0WtNZrQSqRBWk3Nzc2JDKA2Ei5+qTkYKNf1kfc3+JU+wP76jL YHTdNEGpy0CNZstkFI2FAeuhCaPGD57Lou9g0y1Wh2drZtnh/Mq9+SooNFMOd5XR95+Li01pVKRc5tcnJSt0LQEiPBg/pKbWTb5EJCSPBQHroQmjzItArtG9IEo/+Pf/wDz0FqkLRPMU0TTRO1z+MUwKl27CPvuq4/4IzntCmZdNNVSkkjSfwqxHpvQohAeehCyJlL4pRvNpvpdFq3lt gyC0n/2MWvWy4pscUB0LGPPOqlPc/zJxcrpSzLwobDH5PQWs/NzeF18FsIW+idowgZcygPXQhNHq4z9+hFoX0bC5GB3sZ93BGcj Exism07mUz6f6VbZRBtdQ9txGIx/+fSnANBSASgPHQh5ND0VWdRF3nobVjg3YEd9zwPO5tYLIZzuJU 8XFxcTE1NyY/+5i2EkLCgPHQh5NgD8Iear5OHnkeN3xG8nd/TJf6iW8kD/u+bN290q26OniVCQofy0IWQYw9XE1Wvk4frEtLJBUIAACAASUR BVEz9LTfgfbphr5XbggF29+7dkwSkW8kDzm12dhYKwdA0IVGA8 tCF0OThujK3Ls6ljuVpkvkqdQZ9P1V4rizLmpiY8LeJve3uwfO 8UqkkZRCaziVCwoby0IWQdw9Xm2R0kYeOzS201peXl+jDAdvdW xP260Awo1wuI7HKtm2x6T3Ig261kMIxW/IREi6Uhy6E2VSjY4u9LvLQpTUennN+fo7H+6sQOBmllFjztpvp JvIgU5zwqW3bZk0cIaFDeehCmLuHjg26r5OH6xpry7DWq/mvfcFxnFqthq2DvG8P8uB/pud5eGbfZYwQcisoD10ISB4cx5GVvsQPpqenZTys9uWPXrd7uI 62Moi+ZwS5rjs5OYmzkr5J+pbygP+C/+55HmYc9fc8CSG3hfLQhYHLg+d5fnuNYDKcSKg9Rk6qTE24rTx IJUS5XJ6ZmYHHpr9+m1gshheUEeeiZHjCTeSh2WziE+FFDMP44 FaDEDJoKA9dCGL34DgOVs3iSzFNU1ra4UdsIyzL6mH34M9ZUkr 1tzLOcRycgEjODz/84H9ffWPnkvxHmTzKnt6EhAvloQsDlwdIggSNLy4u6vW6GH3bt v0TN7sntl6H4zjYoHied//+/f52yca7V6tV//jWnp1LMmDWPzGCEBIWlIcuBCEPctEx5+Dy8nJhYUFr3TbuzTRN iU7rG8uDhDRgeVFYMKB6Aln+ixrhx5vIg3jY5EUIIaFDeehCQK tXlBzLj/V6HRb87OzMsixpeKd7Ck3rVgHB1Xrmu+M4jpyhZVn+b6i3zCV8 8EqlYlkWnUuEhAvloQsDlwdcd/S+xiOytL8aQK5UKreVB4lb4F/oRB93D7I7kVPSd3Au+Q/aXpwQEjyUhy4EsXvAJ3Rd198SAx/VMAxkAcGtpHvaPeD58uJ9b2dkGAaqH6TRE+TnVvKA/4IBebVazR9xIYSEBeWhC5ELjfbmXAqFHpxLhJBIQXnoQuQsL+W BEBIYlIcuRM7yUh4IIYFBeehC5Cwv5YEQEhiUhy5EzvJSHgghg UF56ELkLC/lgRASGJSHLkTO8lIeCCGBQXnoQuQsL+WBEBIYlIcuRM7yUh4II YFBeehC5Cwv5YEQEhiUhy5EzvJSHgghgUF56ELkLC/lgRASGJSHLkTO8lIeCCGBQXnoQuQsL+WBEBIYlIcuRM7yUh4II YFBeehC5Cwv5YEQEhiUhy5EzvJSHgghgUF56ELkLC/lgRASGJSHLkTO8lIeCCGBQXnoQuQsL+WBEBIYlIcuRM7yUh4II YFBeehC5Cwv5YEQEhiUhy5EzvJSHgghgUF56ELkLC/lgRASGJSHLkTO8lIeCCGBQXnoQuQsL+WBEBIYlIcuRM7yUh4II YFBeehC5Cwv5YEQEhiUhy5EzvJSHgghgUF56ELkLC/lgRASGJSHLkTO8lIeCCGBQXnoQuQsL+WBEBIYlIcuRM7yUh4II QHguq7jOFprpZRhGFpr0zTDPqkO2LYNM9hoNLTWpVIpsLeOnOW lPBBCBo1lWVpr13VfvXr1i1/8wjTNWq0W9kl1QM5qenoaB57nBXaqkbO8lAdCyKDB3yzW47AwM DjRpFKpJBKJWq328uXLIN83cpaX8kAIGTTNZlMOJPYQTeTcsOP RWpfL5WDeOnKWl/JACAmA8/Pz9+/fa63j8fjl5aWO5AaiLRx9fn4epBMscpaX8kAIGTSmabZZ3quPR AHsGLBdqNfrOtj4eeQsL+WBEBIM5+fnhmEYhiF+m6ghTrC//vWvbY8EQOQsL+WBEDJo4E1CYqscRFMk5KxEGOS0B03kLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokDkLC/lgRBCokBELa9gGMbk5GTYZ9GZRqOhtfY8zzAMrbVpmpFVMkIIu S2RM2cYjYSpqqVSybbt2dnZ8/PzsM+rHdd1sb+BNmDTc+/evbDPixBC+kPk5EFr3Ww2HccR102Ul+S2bUMetNaNRiPKp0oII bciiuYMI1WxgTAMI+I213Vdz/NqtZrWemZmJuzTIYSQ/hA5y2uaphxXq1XDMP7jP/6jUqmEeErXUa1WceC6LqLTEVcyQgi5OZEzZ4j3wq0fcZtbLpdx nsCyrM8++yzE8yGEkD4SUctrmqZhGI7jmKY5MTHhOE7YZ9QOQu jg/PwczqW3b9+Gd0aEENJPIicPcC4h8OB5nmVZEqOOFDjParUqp4e QCSGEjAaRkwdCCCFRgPJACCGkA5QHQgghHaA8EEII6QDlgRBCS AcoD4QQQjpAeSCEENIBygMhhJAOUB4IIYR0gPJACCGkA5QHQgg hHaA8EEII6QDlgRBCSAcoD4QQQjpAeSCEENIBygMhhJAOUB4II YR0gPJACCGkA5QHQgghHaA8EEII6QDlgRBCSAcoD4QQQjpAeSC EENIBygMhhJAOUB4IIYR0gPJACCGkA5QHQgghHaA8EEII6QDlg RBCSAcoD4QQQjpAeSCEENIBygMhhJAOUB4IIYR0gPJACCGkA5Q HQgghHaA8EEII6QDlgRBCSAcoD4QQQjpAeSCEENIBygMhhJAOU B4IIbcmFos5jqO1dl0Xj3ieF+oZDT1KKaXU7OysUioej09MTDS bTfyq2Wzi8uKa27Yd0CkF8zaEkFGC8tBfPM9LJpNaa9d1XddtN Bqe58Xj8UajgUe01oZhaK1LpVJgZ0V5IITcGspDf2k0GvPz841 G4+LiAo+Uy2Wt9eTkJH7E1dYBbh005YEQ0gOUh76jlNKtLYLW2 jRNeVAex0XGr4I4pWDehhAySlAe+o5SCjuG8/Nz7CGgDbZt49raLYI7pcDeiRAyMlAe+su7d+9isdiDBw+UUul0 em5uDmFqf+xBa91oNLTP0TRoKA+EkFtDeeg7SqnLy0utteM49X rdsiztiz0giwnyUKvVAjqlYN6GEDJKUB76S71eT6fTuhVXgE40 Gg2llFxhx3Fc16VziRASaeAWlyRLy7LEipHewCXF/kBiDEopHLiuW6/Xgz6lgN+PEDIC3Lt3Tyk1MzODYi6sfCXrhtwWz/MWFhZw/H//9384aEte0lpXq1XNsjhCSJSBnYJDvF6vv337VgcYMh09LMuqVq uWZcFH12g0cIUdx4Howt2EgIRUUw8aygMh5NbA0YF/kY6pg63YGjEkciM1DW3V0RJ1CNLFRHkghPQCVAE2C6tachfOz8 89z/M8TwqnDcMolUqmaWJvoVvigfhEAFAeCCG35mrh7suXLykSPYPd Q7PZhCupUqlo324MYX/bth3HgU4EA+WBEHJrPM+DIavVaqIKzG29C+/evdO+uAICObjIpmm+evVKnhlYkhjlgRBya7B78PvBDcNgaLpnI LEitOfn5/KjuJLgYgpSgykPhNwOWd95nuf3CJMxBBZcdBEHyDIKC9M0+5Xa RHkg5BYgg7NWq2F9B+hzH3MsyzIMwzAM/10RLrVazfM8f4JZD1AeCLkFn332mV8MbNuWtE4yhriu27Z3vPp IkGA726/kV8oDIbcAJaz+JppBZpKQqIHkosvLy3g8rrV+//59RDYQr169gotJ+oT3AOWBkFswMzOjWzt3dhkiwLbtRCLhHw0d 4slcXl76N7ixWKznl6I8EHILlFKSSWIYBuuEifTO060so3DXDQ iMy47B37LptlAeCLkF9+7dQ2mrbuWk27bNbcQ4U6vVTNP8xS9+ 8erVK9wJ4aYqSOYrJlf/13/9l5Rh3xbKAyG3QCmFwKNhGNI9LeyTIqEhNwMW6RjJEOL54G5sN Bqyr+XugZCAiMVirutCGCzLgpeZyUtji+M42CuIFQ7X34g7Eze k53mmaU5PT/esWJQHQm6BWIGzszMcwDq4ZFzRWnueJ1M/0VMvxJN5+fIlbkisXSYnJ3uuZqc8EHILlFKpVEop9fOf/xyTcPBjgowl09PTSqnZ2Vnl48GDB2Gdj1Lqiy++UErdu3cvFov hkd7v9j7+5RAy8sgfW7lcxmLNP/2RjBu4B+r1ut8Kl0qlsM5Htwr7y+Uy7syZmRmXziVCAmBmZsZx nHK5zPZzRPtqpD/66CNY4XAnqrYNEdJaK6V67uJHeSDkFmCRaJomrEC9XnddlzOWx xlYZKUUwlEICId7SrZtl0olyBWdS4QEhPyxSVsb9uMj+sdWuGd nTl+Ai0kqtykPhAREOp1+//49jqEQrus6juORsQRWuFQqoeeS7CPDOh/DMPzrlfPz83v37vW8m6E8EHILsBazbVt2Dyx6GGdgeWu1mn+Rb oda+uA4DgJjCE1z90BIQDx48ACZIboVgbgaDCRjBXoc/fSnP/U877vvvgv3ZGTr8Je//AUH8/PzzFwiJAhev36tW+syce8y/DC2yD3wr3/9y2vV0od6RrpWq+GskFVVqVToXCIkIKSvjuS2egGO/yWRAn4k/w0QesazeDtFFbh7ICQIqtWq35tkmmatVgvxfEjoOI5j2zZcTOJ 4DAuRhIuLCwSrz87Oel6+UB4IuTW2bUuTZBY9jDNwM/qHdzabzRB3k9i7YIKhYRjiZert1SgPhNwCqILfgRC6M4FEAXHp hO5plBsS0nWXDQ3lgZBb4O+z1PYgGU+wfZSGqeGCWIhsbREnZ2 iaEEJIP6E8EEII6QDlgRBCSAcoD4QQQjpAeSCEENIBygMhhJAO UB4IIYR0gPJACCGkA0MjD57nocRDWiS6riujwHWrjly3KkH8xe VygIJGVMDL/0ULHfxKyp1QV4KCl44N/aUpG35rmiarZwkZIl6/fo2/Yvyx+2vH8DiGg0rVm/9fGArbtq8by1OpVLTPnshIav+D6NaFWVIyIqJWq4klCb3569DI g/YN2cBVk6tsmqaIBBpjaV8hqxjuf/3rX1prwzA++ugjpdTHH3+slIrH4xMTEziYnp5OpVKO40CBXr58 KW8tPVVkwjC+fogKbgjN6llChgQxwWdnZ2K4z87O5C8dtht/5pVKRVpliBVqNBqe58Wv4ZNPPsEcnnK5LPYBhqVareJHGBN55V qtJsvZUqkUhTFTQyMP+DIajQa+HlxZNN8Xk42v1nEcbAgwwikW i83NzSmlPv/8c9UCkpBIJFKplFJqYWEhFoupH5NOp3EQj8fxpo7j+JcY+OJrt Vq4w6EIIb0hc2G1z9Pw6tUrHFxcXMj63TAMGISFhQWlVDKZTCa T6XR67xoePXr07bffKqXu3buXTCYTiYSYHe1rlvfu3TuttZg1S IWscUNnaOTB3+jK32TKdd1qtSrD8yzLSqVS09PTiUTi448/xreilJqZmYFCTE9PJ5PJqakp/+NgcnLy/v37k5OT+PH+/fuxWGx2dlaekEqlYrGYbq0s5JRk08DmnYQMBf6leq1W8zzP7z4 yTRMLQf/f/vb2drFYzGazz549e/To0e7u7ubm5s41bG1tZbPZXC63u7u7vb29vr6ey+Xy+fzOzo5S anp6GjLTdlZQIyw6/f6osBgaeQCiq5B9v7sf3+L8/DwMvd/ox+NxbCP8+wbZTEAqZmdnk8mkrA4AHsHmA9sI3Cg40FqfnZ1B/6Mj+ISQG3J+fq59/iLDMAzDcF1XLAP04OTkZG9v7+DgYHd399GjR/l8/o9//OP+/v7m5mb+Gvb394+Pj1dWVqAW+Xx+d3cXG4sXL17s7u4+fvz4+Ph YTI1uObL88dTQGRp5kEhD25pdtL1tNwCbPjc3Bz1IJpMLCwvT0 9PiFsT/mp6e9stJLBZDNGJ+fh5Kg9+KeOD1Jycn8bKpVOqLL77A7eWPVR BCogyEQfu0oV6vT0xMwBQ8e/Ysk8lsbGwUCoW1tbVMJrO7u7uyspLP558+fbqysvL48eODg4OD g4Pta1hfX8dvC4VCoVDY3t7e2tra3t7e2NjI5XLYWJyeni4vL+ dyuW+//XZubi4Wi6XT6VKpBBPnd3yFxdDIg9a6Wq36c42whBc9gPmGs+/qSl+8SSID8/PzogrJZFJeB4Ihx3AuiZMqmUziETzN76QK+/IQQm5BvV6HIa5UKkqp+/fvZzKZXC63tLS0v7+P7UI2m11bW3v27Nk333yzvLx8enqazWaL xeLTp09/9atfHR0dXbd7yGazBwcHy8vLu7u7+Xy+WCzC0fSHP/xheXl5fX19c3MTApPNZre2tpaXl4+OjlZXV//t3/5NnE6SpRkWQyMP8N7Ytg2HEpbwsNrpdFq0AdsISMKnn34Kww1Z FgeRbDUSicT09DRMPFxP2DEkEolYLCbiMTU1FYvF8DQ8mEql8I 7YbeAFU6lU2xgAQkg0cV1XZoZju/Do0aODg4NcLrezs1MsFnd3d7EDyGazm5ubT548+e677548ebK2 tvb06dPV1dXt7W3sAzry7NmzX/3qV3/60582Nze3trZ2dnZyudz29vba2trOzs6LFy9yuVwmk1leXt7b2 8vn8whsFIvFR48eFYtFpZSEQ0IkivKA+Ay+P90SBkRpbNsWAYB 7J4JIfAkfx5+g5jiOhLWRVU0IGSjw6QO4kqrVKuwJ1pGHh4erq 6v7+/twIoXC/v4+fFlQnVwuB/sGG1iv15H2IqUSfuUol8vI0On7pYuiPDiO02g0kKUKG4pPDuN7//59HKB8IYJgv+L/RIZhyMB627aRlqCvKbgjhPQRKEGtVjNNU8oa4ExGbPm3v/3t7373Oyzkw5KHtbW1fD6/t7e3sbGxtbX1zTff/PKXvzw9PU0mk35jYhiGpDOZpnl+fi7rZj2AubaRk4dKpSIuGtF DVJqoltdItRKQrhYrhE5bkMPvPUTIBEDwg7ywhIwh0AO/VYVbOJ/Pr62tHR8fI60IsQHkF4XC8vLy4eFhNpstFAr7+/s4q+Pj40KhkMlk4EWXbdDFxYXonG5tj5rNZt9jFZGTBwHa4Lqu VB5A8OPx+Pz8PCLDEjGOFJ9//rkEKqD8/ro5GQPLIglCBo1t27JHr9frSikY3729vUKhgOABQgLIOApLHk5 OTorFooSs4ez66quvVldXX7x4sbm5WSwWZ2dn9Y/thmTVD6j9RhTl4fXr1+Kgh8FFKDiVSqXTadlAiJcpUiBvSuIiC Im7rmsYBrp6iDNRD2AzSAhpQ/z1Sim4j/b29r7++usvv/wSS/Wtra3vvvuuUCisrKyEJQ/7+/tra2sHBwdbW1vYMTx//hzn9vvf/35xcXFvb29xcTGVSuHjuK4L94MsPdHEob+XLoryAFQrs0jamIg J9rfHiCZIcMI5o0hiYWEBn8vvU+IGgpCBgmW1UioWi0EYNjY2d nZ2vvrqq6dPn66vr+/v7+fz+fX19Ww2e3h4GJY8bG9vP378GBVzqMXb2NhYWVlBdtMf/vAHZEzt7u4qpaanp7XWFxcXqN4YXJJL5OQBfViVUlK8BqQ5kjx y//59v2ZEB1GvBw8eqB8XUujWviH0cnlCxgHLsmZmZnZ3d4+OjpaW lo6OjpCh9PTpU6lnfvjwYT6fz2QyITqXjo+PM5lMNptFqUSxWC wUCsViERmx6+vrJycn6+vrxWLxz3/+88OHD1WrNsLzPFll9j2xPnLyoFsZSliAS9ejeDwugWi0VlU/7pgUKaTMAqBZUzweTyQS2tcGMuwrTciIE4vFUFLw1VdfvXjxYm tra3V1tVgsLi0todINVhiVByHuHjY3N/f393Gcy+U2NzdRWQ1H097eXrFYXF1dLRQKKKBDbYRhGHAoDagV R2jyILEUlDVIzD0ccz54pDssgtXYPUAhEIGQTrSu64be552Q4Q KbckkfB0qpsMz9oDk6OlpcXJScV782SMKnf4ZEb1c1zN2D5PBo rS3LsiwrbBs+WBBaV0otLCyUSiX58t68eYMDmVMU/HdByLAD14rnecjnicfjIdYxDJovv/zyb3/72/LycjKZxKfGOlt0wrKsRqNxRyd2mPIgY5ggbul0uq1oYPSQ5h9z c3MogxAxaMtDIITcHJgRvxNie3tb3DWjx+np6cOHD09PTxcXFy cmJiCNhmHAqojj2rKsu5iUMOUBnwFZyWHa7EBA4EEpNT8/n0qlJiYm4vH4+/fvoZGNRgMHhmG0VcwTQm6I53n1ej2VSn311Vdff/31+vp62GZ8UOzt7e3s7BQKBQQtENQUJBThOM5dsudDkwd/+j9ye2KxmD/JZ8SQBoIyPWJ2dvbevXtyQaRrSuhtGgkZOizLMgzDtu2FhYWVl RV0Py0UCmGb8UGxtbX17Nmz9fV1hNY3NjZQNCeNQ2zblpbgPW8 gQpMHVIrp1r7hk08+iWaWah+RJlHxeFxyrmZmZgzD8HfxM02T9 RCE3Ar87SilkAOKerewbfgAQRkdUq1yudzq6urS0pJSSvtC03J lerYnocmDpOgq34I6sl327o5k4qZSKWwj4vE4SqyxDcSsbDbpI 6Q3qtVqOp1+/vz5r371K7Q+DduGDxBMiUAnwZWVlW+//fb4+Dgej8OAyHbhjlMsQ657gOmEufRPAB09UPegWr1A/CIxNTVVq9XERViv19lsg5DbopTCMGdM7MFB2GZ8UJyenqKm+vD wMJPJZDIZ9OSYm5uDQsAhgUh1z+VyQcgD2oOYponzhmusUqlg9 o6/HHrkM5euAy03/F0YCSE3wbIs0zRTqdTKysrp6emTJ09Q4zbC2tCFvb09SXXVrW1 Ez+mtQcjD1ZOrVqvQhrYJoGNIPB6Hb03K5RzHYcsNQq4DZQ2ma aJwqtlsptPp3/72t99///3u7m4mkzk+PkYDpTFUiFwut7W1pXwtN+5SYztweYCIXV5eSoWw bdvoqiSduoF/fuf4IJNNJycnZQ/I6gdCuuAfnaK1VkodHR1lMpnf/va3hUJhZ2dnaWnp6dOnGO88VuRyuUePHs3Pz6Nbn/bpaA8MXB789dzSb1YpNTExgTTWZDIp3fdkMzE+SCMpRCbq9bpt 22yqQUhHYEMwULJarZZKpWQyub+/v7Kysrm5mcvlXrx4kclkFhcXDw4ORrju4ToODw83NjaKxSJcTH fMkg8oNI1qL611rVar1WpiHJPJJMxiIpGI5myfAECnjbm5uXg8 rrl1IKQr/hWn67pKKQz2OTo6ymaz2Ww2n8+jmd1oJy91BP1oNzc3Z2ZmJMP 17du3vV3qgcsDgtL+rnNoPYRYtKS0YuBPiDY6LGKxGJKaxNWm2 e6bkGuAAxZFcBgX9uLFC4xwyGazi4uLy8vL+/v72Wx2c3Pz9PQ0bHMdNBgUsbu7u7e3h7EQdyGI3YM4CiFiMIJS BJdKpaampmS82rghsYdEIoFwvR5A33ZCRgP4XVHnhRAmxjbs7+/v7+8fHx8fHx+jihjNusM210Gzvb39/Pnz09PTra2tWCzmeZ7jOG2Fcjdn4PKAM3McByONxJWkfKFp2Td Edn7DQFlYWMAHTyQSCM4P+kshZHixbRvZffF4PJfL5fP5fD6fz WbRYWJ3d3djY+Pw8BADdsI210GTy+VWVlbQiymbzaZSqbtc6oF bIjiUEFBCGHbkm2f0Be0bNSoHLJcjYw78rhgcXSgU4FAaw13Cd WQymY2NDQyYQ0hGKSVdPtvcEh9s/RnEQlXSqpRSk5OTkqtDuoD4m2ma+HvoeaAHISOG9Go7OTnJZrO np6djGIK+jkKhANXEtNT9/X2llG4ZYf/68iZrzeAyl2zblrKGtooHchWttWmafnmvVCqSGUzIeOKf6LC4u Li9vY3GpWGb5aiAVn07Ozubm5srKyuLi4v+Xt+2bcti/SZ9+oKQB/SVhdWbnZ1tm8NMrkNrbVkW9g0yDSKA74uQKHN5eamUevbs2Tff fLO5uXlycrK2tha2WY4KOzs7SPBFlP7k5GR3d1cphRoRuYamad 7EITFwecAWplwuq1aCfywWG9sSh5uTTqf/9a9/wbMEVWCjb0LQfEEpVSgU1tfXDw4O0D8jbLMcFba2thYXF4vF4m 9+85vDw8PV1dXT01MUVEkEQtxKH/RGBNSST2udSqUmJyelxRDpjmwJHcdpNptMdSUElMvlubm59fX1 tbW1/f399fX1McxQuo7Dw8Ojo6NisZjL5TKZDCYjKaVev36tW6FpcdB 9sDtDEPJwdnaGIjgwPz/P5KWb8Mknn/zwww9yGakQhFiWNTU1hQZ8mUxmaWnp97//PZ1LQjabffz48f7+/sbGxsHBwcnJyaNHj37/+98/ePBAaqfhh2jrW9WRgcsDlEoplUwmpayByUsfBNF77Rv2xKxWQh zHicfjBwcHSN/M5/NbW1s7Ozthm+WocHh4uL29fXBwsLa2ls1mj46O9vb2Njc3YUxs 25apATeZPBbE7gFJyhMTExJ7CNfyDgvxeByj1bXWnufB60rImK OUwop4dXV1Z2cHHZbCNstRR7WSIf1DZT7YsC+I0DSKov0tlZjY +kHQZUSKHm3bdl2358a8hIwGSqn9/f3T09Pl5eVsNov2c8ViMWzzG3U2NjaSyaQkyqOHxQe7fwaxe1B Kzc3NJZPJ8Wy61xsyfBTfYs9dUwgZJZRSx8fHSMiRJM7Nzc2wz W/Uefr0qVLK8zyxJDfp+xlEz6Wf/vSnMHkTExNjOPCnN5D7+8UXX5TLZRF59vomY87CwgJc6ktLS9l s9uTkZGVlBdn9pAvr6+v37t1DOPrmQ4sD2j2o1hxpZLX6E5nId SBIg2vob1RJyNiilDo9Pd3b21taWnr+/Pny8nI+n6dz6YMUCgXl6/WJiocP6kRA8rCwsCATldVYToXrAene6nkeey4RorWemJhYXFx8/Pjxd999l8vlVldXWTV9E5aWlu7du6e1fvnyJa6kjOHpwsDl4eL iQvJZ4TChNtwETFqdnJx89+6dFDdeXl4O+vsiJMoo14cJ/wAAFb5JREFUpU5PT7/99tuNjY0nT54cHx8/fvyYzqUPUigUYrEYUpVc10Vo+sNXe8DfptZaIwkHWa3pdDoWi4 3t8J/bMjMzo7X2PI/z4wjRWk9OTi4vL29sbKytrZ2cnBQKhUwmw8TWD4LO3rqVs6S19 jwv/MylsA3scJNMJicmJvzbQI8EAsI8OEY6oL9fjWVZ+PHdu3f8Xga BNAgS//j79+/T6XTYZnZYQYGIajmrdUQaeodtYIcYaU6FK/nBGhbSR7xWvAf7Nlx8y7K81k7O/9fFjLJBIB2BRCGUUmGb2WGF8jBSJBIJ6UyFK4nx64P+vgjwfM0 scXy1CQHM1j/+8Y8gT2xMMAzDdV1cYcMwIMmK8tArlIeRAtqQTqfn5+drtRrXp 8GDGvXLy0vDMNAYBvjjQI7j8KsZNI7jlMtlx3FmZmbCNrPDCuV hpIA8IOlLa41aRxgjEgD+lHDHcRKJRCqVisViyCjD49LjxLKss M931NCtFsWu68q+TXH30CuUh5FCsoE/+eQT/IiSkQQJhPv376tW5yvVKuoE9+7dk0egFvxe+o5SKpVK4dr+/Oc/lx/DNrPDCuVh1BCThCsJn4ZLAgHbNdd1tdaVSkUp9emnn6pWvgC+E cSrsdQN+3xHDe0LTUsupqI89ArlYaRItOatTk1NiaPjg9OdSH9 BE3VYK+UbwmFZlvRXv8lYFXJb4FBqNpu45z3Pc103FouFbWaHl ejKAwrilFKxWAx/YCyLuwnS9hxX0nVdm1FQMjZIyKFer+POV0rlcrmNjY1sNpvP5w 8ODra3tzc3N/f29sI2v1FnY2MDbZckJe8m82MGLg/Yks/MzHz00Udi+MSrSK4DsYd4PP6zn/3Mtu3vv/9+0N8UIZGiVCpJSqvW+u3btw8ePHjy5MmLFy8KhcLKykomk8lm s4VCgfLwQYrF4unpqVJK36az58Dl4c2bN34xSCaT8/PzoRndoQJ7rJcvX2Lp1Gw2/cn4hIww4kdFgAdZTK9fv/7000//93//d39/v1AoHB4e7uzsFAqF1dXVsM1v1Dk5OVFKaa1R7Ok4zk3sSUAdW+ PxuBR5cVTcDYGs6pbvm22XyPgglgsuctd1caCU2traQrcl7CHY zfsmbGxsKJ+bWt8skDlweajVaqqVlykKQT6ITORG5PP8/HzQ3xQhkaJWq/mXRKVSqVqt3rt37/nz5+vr68vLy8VicWdnZ39/P2zbOwQcHh4mk0nDMFBgiEvqtmaLXkcQuwdJ0JycnGQ375uDoU lyGavV6ge/TkJGBnGRX1xcSFKGUiqTySwuLmYymdPT00KhsL29vb29Hbb5jT qLi4tiTC4vL6G7H5wiM3B5uLy8jMViWAtjvk0ymeQ24oNIcVCl UoEqMG2JjBX+zEscX1xcJJPJp0+fHh0d5XK5ra2tTCazvr5+fH wctvmNOtvb2/Pz87Ztv3//Hpf0JsNjgpv3MDk5CZHwF6CS68BFm5qa8jwPXkLKAxkf2jbK0m BDKZXNZnO5XCaTwQZiY2ODu4cPUiwWlVK4qrVa7YbhzIHLg+d5 2DQoX4dqupg+CKQ0Ho+3xegIGWeUUkdHR6urq9vb2wcHB/v7+0+ePDk6Ogrb/EYFpHLl8/lsNru7u7uxsbG8vJzL5XZ2dmZnZ6WEE00BPhidHrg82LZtGAYa B6lWvxopCSZdmJ6ehiTUajV8kT/88MOgvy9CIo5S6vj4eGNjo1gsZjKZk5OTTCYTtlmOCicnJ/l8fnV19dGjR99888329vbp6enh4aFqFcS9fv0al/Em1Q9BOJfevn0LYyfbCPJBsHuQwtFSqcS4NCHVanV+fj6Xy2FF vLq6ure3l8/nwzbLUSGTyWBftbOzc3Jysrm5ubGx8fjx44WFBbfVSUw6DX/QXz1weUC/oEQiMTk5iU1DLBajTnwQxPO1bwPIWUCEaK2VUsViMZfLPXz48J tvvsnlcouLi2Gb5ahwcHCQyWTy+fzR0dHy8vLu7u7R0dHvfvc7 pZTW2nEcRHFglj/YVyMI55LWutlsKqXQJFn5ghCkC7pV7gBhqFQqbMlHSLlcjsfjx 8fHJycnS0tL33zzDaumhaOjo2w2u7W1VSwWFxcXT09Ps9ksjAl MsUxHlz64XQjCuQTQmE/yNUl3YrEYVME0Tcdxbt5kkZCRRym1tbW1sbHx9OnTr7766vnz5 2Gb5aiwvLz8/Pnz1dXVfD7/xz/+8eHDh7u7u1NTU1AFyXOBNoQfmgbVahW9ND7++GPFjq03Q7fS+ zzPg1Sw5xIZcyzLcl13fn5+fX19d3cXNXE7OzshW+XIUCwWf/3rXz979mxvb++///u/X716hUatcgHr9bq4qRGK6EIQ8iBGDfsGBh5ugm5tBiU3mT2XCN FaW5Zlmub8/Pzm5ubKysrz588pDwIajWxvb+dyuePj48ePH6uWNviDl41G4yb 2JAh5kB6BiUQiFotx69CG1AmimDyVSiWTyQC+F0KGEbhElFKoe 1hbWwvbJkeIbDa7vb29tbW1vb2NvrZK9W7kg2jJp1ujbGAEZSg QUS1JmJiYwDwMaX4+6O+FkGFEGsx8+umnv/nNb1ZXV//+97/Dw052d3efPXuWz+eLxSKSff2NWnsgIOcSiuO01vQsteFvZIttR DweD+BLIWRIQVKmaZqJROLhw4d7e3tPnz4N2yxHhUePHu3s7Bw dHX311VeSz9qzXzoIeRDBRxMoxarpH/PZZ58ppWKxGC5Ls9mU4dKEED+maVqWJSk3qVQqm80uLS2FbZaj wt7e3rNnzzY3N9FkCZUNPbdrG7g8+Ie2/7+3bHlUiFLKH4yZnp6emJgY9DdCyLCD2q5mszk1NZXP5wuFQth mOSqgLC6bzR4eHiYSiTte54B83PAsNRoNZDGFa5EjBbRhbm4OM 1Z1yxcXzPdCyHCB0h/sHi4uLhzHUUqxqYZQKBTW19cRkW42mx+si+7OwOWh2WzCufTy5 UuttW3bjuPIKDSiWrUgABeN7ZUI6YJ4X5EPyappYXNzc3Nz8/T0dGFhQS5XzyIRUGgaX6frujJYPERzHCkwEg6NbOVyBfClEDKM mKaJP5BGoyEx6ng8HrZZjgrFYvHg4EAphXD0DesbriO0BEqkMC GPM5FIzMzMhGqlgwCfMR6PT01NSchBwjDT09NwwdXrdTqXCOkI og6YWwAXU7lcnpub29/f39nZOT4+3tnZWV9fz+fzS0tLp6enYZvrQZHJZDY3N09OTjAKa W9v7+TkZGtra3d3d3l5WbXWmnfs0haaPNTr9bYi6ng87nezjBj QBsxBEkmYm5tDMiumwokq3NFjSMhoI4Mw8SdTLpeVUltbW2tra xh4gEX0yspK2GZ8UBSLxePj462trZ2dnYODgydPnuzt7UEd/+3f/s1fIH2XWQAhl1/BSkon19FG5oOmUql0Ou0vlta+6P1NOikSMp4YhtHmfZXGQel0u lAooFUf2mzkcrmwzfgAWVxcxJg8dN/76quv1tbWlFKNRgN7rMvLyw92VepOmPKAU1et0rCZmRmpGR490 MN8dnbWv0OCLuJqNJtNjnYgpDuyw37//j2O6/W6uNeVUn/84x/X1ta2t7cPDw/hbBlJstnsxsbG8fHx4uLi1tYWhiPNzc3JhfLbkJ47PYcmD9KtG otoxGZHmGQyOTU1BX8aXEySvmVZlnx/2DWzcTch1+E4Dv5A0KoHDyIaMTExsb29XSwWi8Xi6upqsVgM24 wPisPDw52dnVwul8/nV1ZWtre3Hz58qJSSBFHtK5aOblncTYCV/NnPfjbC5XLy0dBb6bPPPovFYjMzM7gCGPtTr9excWZzVkKuw7Z t2WcjSgdtwIpTKbW+vv78+fPNzc0Rdi6trKycnJzs7u5ubW2dn JwUCoWf/OQnrutCOMvlMi7R27dv73KpQ5MHcSBC2bCsHmHnklIqHo9LNxF xK7mu2/YVookhIeQ6TNNsNBoiEmIW379/r7VWSu3u7u7s7Iywc6lYLCLwvrS0dHx8rJRChZnneQg8iAfiH//4R8/XOfzdAyIQl5eXqAAYVUQY0uk03Er6xxppGAaFgZDuyN+IOEwk+ or8HBRDKKWePHny7NmzsM34oCgUChsbG/l8HlUO/i5tnudBL+XBnkupQpOH6/KXVSsOkUgkZP5BWDa9Nz7++GMIwMzMjKgCDjBRdXp6WmaCE0L6 goQiMF1RKYXYQy6XOzw8XF9f39vb29jY2N/fHyKn0+rq6h/+8IeNjY3d3d1isZjJZPb395eWlo6OjuA9U77clr5f0pB3D1fzl/0zR6enpyWcOyygdRISsRCCVq2ih3Q6DamTj8/tAiF9QRZb/sxXpRSqxgqFAgK5xWJxb29viCYIHR8f/+Y3vykWi+vr66urq4eHh9ls9uDg4PHjx/l8PhaLaa3Pzs4k5NDfqxpm5lLH/GXXdWFSZWTQ1NQUdhXDQjweh0gAOM2++OILpdTk5CQ+KYPPhAw ClA2dn59fXFxorefn5588eXJwcLC3t/f1119/+eWXqCML2+zflL29vUKhsLe3l8vlcHx0dLS8vPzdd98ppXTL9Y Lldd8T4kOThy75y9VqFW6lIR0qJ3XgbeV+U1NTkpPXaDTYd4+Q fuF5nqydYU9c13Vdt9FofPTRR2tra1tbW5lM5vnz57u7u9hSDA tbW1tbW1vwif36179++vTpzs6OUkrEwLbtAS03w3QudcxflmwE cd9//vnnwZv4noErbHp6Wo7//d//fXJyMp1Oa60Nw/B3QbljRxRCiB/LsuCvfvfuHR6BiyIWi6XT6dXV1fX19YODg+Pj47Bt/k3J5/P5fB6pq3t7e3/605+UUlNTU/KRRRQHEcsMUx465i9D8+v1OpQjXFvfA/5pqVLrUCqVpLskNF+CLoSQu9NsNhGb9fcrgxmBu6nRaKTT6ePj 47W1teXl5bDN/k3BqNTV1dUvv/xye3tbKQWbaZqmpGxJhtIdW2hcJeTQ9NX8Zf9vkcWcTCaHrlwO 7ZWwh/B/otevX2ufY43+JUL6AlaTUi18fn4u/hapALi4uFBKHR4eDtHuIZfLPXr06NmzZ8+fP5+dnb0askWIZUB 9FkKThy75y9VqFZdAnGshG/tbgkA6/nUcB7UqjuPgk0Lz8NEoD4T0i2q16rquP3tHBsw0m01/OpNSKmyzf1PW1tZevHiBc9YtdzTaKxiGAQNiWZZk9Pb3koZfFn dD6vX63NwcUkWl1+nExASs8OTkJB6U5yB04d95TExM9LALQSoq XEbJZFIGVOC3MrVC5kXjIJlM4ot0XZdJSoREDaXUzMzM3t7e3t 5ePp/PZDIvXrzY2NhAPcHe3t7p6Sna3mWzWXQI393dxYiF3d3d5eVlH FxHJpPZ3d0tFAqZTGZnZwcvJV240UHv6dOneJ1MJoNoeSaTyeV yOIfNzc3Dw0OYFNkcwKoEFrMcGnnQrRU3DDSG6vgtuF82pqen4/E4atDQykJKEHoglUpBbPzqMjU15R/bgAP/0Dds+nSrnxIhJFKUSqVYLJZMJjOZzPr6+vr6+osXL2DHDw4OYL IPDw83Nzfz+Tz+LRQKv/3tbzOZzNdff72xsbG+vt5FHnZ2djKZzN7e3rNnz3K53P7+PhKo 1tfXt7e3C4XC2tpaJpPZ2tpCD8F8Po96vdXV1c3NzQcPHsCYfP/997qVDR9wMsswyYNu9arDLFKIgYxdw1oeuaQQA6Q8+avq5Jk3x 99jNZ1Oo6EeQGhBnjM7O3t5eYntnniNcMKcD0pINLEsSym1trb 29OnThw8fHhwcFAqFR48ePX/+fGlpCQv/3d3d/f395eXlXC733XffZbPZpaWlw8NDjFvoyNHRUbFYzGazEIOHDx8 +e/ZMNivffvstxOPg4GB1dRXisbi4WCwWsUGJxWL+OLPfgEjCZwAM mTzIklxr7Tf32CjAUmNUp18SUqnUXUqvUcLtd1LNzs7iRxnekE 6nJZqCA7hBkVTABt2ERArZ02Mlh/Xf3t7ezs7OysrKt99++z//8z9ff/01vD07OzvYOuzs7GBvkcvlHj9+DOXoyPb29tLS0v7+fjabxeQJ DP5EV4/Nzc1f/vKXz58/X19fz+Vy2Wx2e3v76dOnhUJBKTU1NdVoNOAs+ec//6l9kVrTNIM0JsMkD9CGer3uuq5lWVBXKZ2Lx+NQC/iafvrTn6pWNwvY9N4UQlQhHo/H43FxZMXjcdxSn3zyiYTQESOyLAvdE/2nTQiJGvV6HaPdEcFWLZ/E6enpt99++5vf/GZzcxOVdLlc7ssvv3z+/Dks/tHR0eLi4tdff32dPHz99dfr6+uHh4dra2uFQmF/f39jYwPjr7e2th4/fvznP/8Z87Ezmczp6SnszL179y4vLzs6G+BZCnihOUzyoLUul8sS6UUZ iDSigjAsLCyk02mx6f5tRCKR6EEhRH4kegGfYCqV0lq/f/8e3sBarYYuif5kJKSxEkIiiEztRQ2B/OWinR94+vTpo0ePcrnc2traX/7yl8ePHy8uLu7t7SFQgU55HZEmetvb29lsFlNOnz9/jvYYT58+XVlZ2djYUK0lLN4dCUiwabVaDQcwI35hCCzbZZjkQX ZYslp/8+aN9sXx//WvfzmOo1oJRb/4xS9g3+Ffuq0wCPj+JCUJ7y7VN/ja5BxwgE604OLiggmshEQKrNAvLy/F1EpHH621bdv4E8bMLqwy9/f3t7e3Nzc3//a3vyGq3KW135MnT77//vtf//rXCDZgAnaxWNza2oJVgV9a+yxGs9mUymechmmakpuL1WfPc996 Y2jkwZ/RhYRf6ayifcbaP23NNE3ZLvj9TrcC/8W/3ZMsY7mxxPpLlQN+rNfrsrcI4BIRQm6IWAxxP0jBhL/Hj/aFEmEK/IvFVCp1nTzk83kUOYsNgdsqkUjgZVELJcfydo1GA++OKWH4lW3 b/myXwJabQyMP/aJUKsFfBOWQsgnVaq0qFeqMJxNCutNlZRlivUK/GDt50C2XlPYt/+VbRCsk13XhQep7DxNCyJgQYr1Cvxg7ecCm0nGcZrOJkW3YqTU aDf/ouoB9fISQYcS9Bvw2rHqFfjF28gAk2bTRaIjzsW2vwK0DIaQ3w q1X6BdjJw/VavXqRk++uXK57HmeZLyx2pkQchdCqVfoF2MnD7qVaOS6rgxdk GCDwIwjQsgH6eJcCrFeoV+Mozycn5+LQ0lrLdpumqa0SGKpMyG kZ8KtV+gXYycPUALHcaSEQuRd5EEq3fwqQgghNyTceoV+MXbyQ Agh5CZQHgghhHSA8kAIIaQDlAdCCCEdoDwQQgjpAOWBEEJIByg PhBBCOkB5IIQQ0gHKAyGEkA5QHgghhHSA8kAIIaQDlAdCCCEdo DwQQgjpAOWBEEJIBygPhBBCOkB5IIQQ0gHKAyGEkA5QHgghhHS A8kAIIaQDlAdCCCEd+P8A3xGXOhayBlMAAAAASUVORK5CYII=
Dr. Sami
04-01-2012, 02:46
آسف على التأخير
قمت بتحميل الصورة على الرابط التالي
http://www.m5zn.com/uploads2/2012/1/3/photo/010312150118fpqrpvf2vz75iz.jpg
يرجى ممن لديه معادلة لحساب السرعة الزاوية لهذه الجملة تزويدي بها ولكم مني جزيل الشكر
azoz20066
06-01-2012, 11:00
السلام عليكم
اولا باستخدام هذا القانون
http://upload.wikimedia.org/wikipedia/en/math/9/b/e/9be08b9254aaacbc0386b26bf137f2ae.png
حيث أن T هي محصلة العزم الكلي
I هي عزم القصور الذاتي حول محور الدوران
α تسارع الزاوي
فمن خلال تسارع الزاويه تجد سرعة الزاويه
ملاحظه: لست متأكد من الاجابه ولكن حبيت اشاركك بما أملك لعلك تجد فيما كتبت شيئا يفيدك
ABADY100
08-01-2012, 14:09
طيب هل تمتلك كتلة الكرتين؟
Dr. Sami
18-01-2012, 09:02
الأخوة ABADY100 و azoz20066 أشكركم على مشاركتكم
الأخ ABADY100
يمكنك استخدام الرموز في القوانين اللازمة للحل لأني أرغب في دراسة هذه الجملة بشكلها العام والابتعاد عن الحالات الخاصة وبالتالي يمكنك اعتبار كتلة نصف الكرة المجوفة هي m1 وكتلة الحامل هي m2.
الأخ azoz20066
إن القانون الذي نوهت عنه (لم يظهر في المشاركة وهو أن محصلة العزوم المطبقة تساوي جداء عزم العطالة بالتسارع الزاوي) هو قانون مهم جداً في هذه الحالة. ولكن لم يساعدني في تحديد السرعة الزاوية.
إن هذه الحالة معقدة جداً حسب اعتقادي لذلك شغلت تفكيري جداً.
إن القوانين التي ذكرتها في بداية طرح الموضوع (مع تصحيح بعض الأخطاء التي أعتذر بشدة عنها):
M=F1 L – F2 L =(F1 – F2) L
M=P A (CD1 – CD2) L
M=1/2 ρ A V^2 (CD1 – CD2) L
M=1/2 π ρ R^2 V^2 (CD1 – CD2) L
حيث: ρ - كثافة الهواء
الإشارة ^: تدل على الرفع إلى قوة (أس) مثلاً V^2 هي مربع السرعة.
يمكن تطبيق هذه القوانين فقط عند إقلاع هذه الجملة, لأنه ومع ازدياد السرعة الزاوية وبالتالي ازدياد السرعة الخطية لأنصاف الكرات v سيقل تأثير الهواء على الجهة اليمنى (المقعرة) لأن السرعة النسبية للهواء ستصبح V – v, وبالمقابل سيزداد تأثير الهواء على الجهة اليسرى (المحدبة) لأن السرعة النسبية للهواء ستصبح V + v, وبالتالي فإن العزم المطبق على الجملة سيتناقص. وسيستمر ازدياد السرعة الزاوية وتناقص العزم حتى يتساوى العزم المطبق مع عزم قوى الاحتكاك للمحور وبالتالي تدور الجملة بسرعة زاوية ثابتة (حركة دائرية منتظمة).
والقانون في حالة حركة المجموعة يصبح:
M=1/2 π ρ R^2 ((V – v)^2 CD1 – (V + v)^2 CD2) L
vBulletin® v3.8.7, Copyright ©2000-2025, TranZ by Almuhajir
diamond