مشاهدة النسخة كاملة : مساعدة في حل أسئلة عن حركة المقذوفات
إحساسي كبير
19-04-2013, 14:55
السلام عليكم ورحمة الله و بركاته
أتمنى بس مساعدتي بحلول هذه الأسئلة الثلاثة
http://im42.gulfup.com/Jqoq0.jpg
و
http://im42.gulfup.com/kGVzl.jpg
وجزاكم الله خيرا وجعله في ميزان حسناتكم
ام عبد الرحمن محمد
19-04-2013, 16:37
(a) Range of a projectile is given by
R = (u^2 sin 2θ) / g
The maximum height is given by
H = (u^2 sin^2 θ) / 2g
Here R = H
Simplify to get
sin 2θ = sin^2 θ / 2
Put sin 2θ = 2 sin θ cos θ
So
4 cos θ = sin θ
or tan θ = 4
θ = tan^-1 (4) = 76 °
(b) The answer does not depend on acceleration due to gravity (g); it cancels out in the beginning. So the answer would be same even on another planet.
(c) R = (u^2 sin 2θ) / g
Greater the value of sin 2θ, greater the range.
sin 2θ lies between -1 and 1.
So maximum value of sin 2θ = 1.
When sin 2θ = 1,
2θ = 90
or θ = 45
Put sin 2θ = 1 in the expression for Range :
R = u^2 / g
خلف الجميلي
19-04-2013, 20:51
هل من الممكن تعطينا اسم الكتاب ؟
ام عبد الرحمن محمد
19-04-2013, 21:18
السؤال 13
The time to travel 36 m is given by
t = 36 / 20 cos 53 = 2.991 s.
In this time it travels a vertical height given by
h = 20 sin 53*2.991 – ½ * 9.8 *2.991^2
h =3.94 m
Since 3.94 m is more than 3.05 m
the ball is above the cross bar by a height of 0.89.
The velocity at the end of 2.991 s is
v = u –gt = 20 sin 53 – 9.8*2.991 = -13.34.
The negative sign shows that the ball is falling down
while approaching the cross bar.
ام عبد الرحمن محمد
19-04-2013, 21:24
سؤال 14
How far horizontally from the base of the building does the ball strike the ground? >>
X = Vx(T)
where
X = horizontal distance from base of building where ball will land
Vx = horizontal component of velocity
T = time ball strikes the ground after being tossed
Substituting appropriate values,
X = 8(cos 20)(3)
X = 22.55 m
<< Fund the height from which the ball was thrown. >>
Y = Vy(T) + (1/2)(g)T^2
Y = height from which ball was thrown
Vy = vertical component of the velocity
T = time when ball strikes the ground
g = acceleration due to gravity = 9.8 m/sec^2 (constant)
Substituting appropriate values,
Y = 8(sin 20)(3) + (1/2)(9.8)(3^2)
Y = 52.31 meters
<< How long does it take the ball to reach a point 10.0 m below the level of launching? >>
Formula is
S = Vy(T) + (1/2)(g)T^2
where
S = 10 m
Vy = 8(sin 20)
g = 9.8 m/sec^2
T = time for ball to reach a point 10 m below the launching level
Substituting values,
10 = 8(sin 20)T + (1/2)(9.8)T^2
Rearranging the above,
1/2)(9.8)T^2 + 8(sin 20)T - 10 = 0
Solving for "T" using the quadratic formula,
T = 0.22 sec.
خلف الجميلي
19-04-2013, 23:28
وفقك الله أختي الكريمة هالة
جهد جبار وفقك الله
vBulletin® v3.8.7, Copyright ©2000-2025, TranZ by Almuhajir
diamond