المساعد الشخصي الرقمي

مشاهدة النسخة كاملة : بسرعة ممكن مساعدة


terroreman
20-12-2006, 12:40
هلا تكرم احدكم وشرح ما هذا اظنها تحاليل لمادة مشعة

204Hg *ADOPTED LEVELS, GAMMAS 94NDS 199411
204 80 I 64 43 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
XA204AU B- DECAY
XB204TL EC DECAY
XC204HG(E,E')
XD205TL(E,E'P)
XE204HG(N,N'G)
XF204HG(D,PNG)
XG204HG(P,P')
XH204HG(D,D')
XI204HG(A,A')
XJCOULOMB EXCITATION
XK205TL(MU-,NG)
XL205TL(D,3HE)
XM208PB(D,6LI)
204Hg Q -347.3 15 7495.0 19 8852 15 1993AU05
CL T From BE2 in COUL. EX., except as noted. BEL values for
2CL L GE 3 multipolarities are from (E,E'), they are given here in
3CL single particle units.
CG E$From 204AU B-, (N,N'G), (D,PNG), (MU,NG)
CG M$From (D,PNG), except as noted
CL J(P)$Based on L transfer in (P,P'), and from (e.e')
CL J$JPI from (N,N'G) are based on G(THETA) and on excitation function.
2CL JPI from (E,E') are based on cross sections as function of
3CL momentum transfer. Natural parity states were excited preferentialy.
CL E$For E GE 4406 see levels observed in (E,E')
1 L 0 0+ STABLE
1X L XREF=ABCDEFGHIJKLM
1 CL Isotope shifts: 1977Du03, 1975Ro10, 1972Bo09, 1978Le09
1 CL Charge distribution studied (1979Ha08).
2 L 436.552 8 2+ 40.4 PS 4
2X L XREF=ACEFGHIJKLM
22 L MOME2=+0.40 20 $ MOMM1=+0.80 20 (1986KO02,1989RA17)
2 CL J from COUL. EX., (A,A')
1 G 436.551 8 100 E2 0.04
13 G BE2W=11.95 8
1 CG BE2 from COUL. EX. and from (E,E')
3 L 1128.35 8 4+ 2.9 PS 2
3X L XREF=ACEFGHIJKLM
32 L BE4W=5.5 7
3 CL J COUL. EX.
2 G 691.80 10 100 E2 0.013
23 G BE2W=17.0 12
4 L 1635.76 10 0+
4X L XREF=CDEGL
4 CL J$from (E,E'), L=0 in (D,3HE), G(THETA) in (N,N'G)
4 CL M(E0)=1.1 e(fm){+2} 7
2 G 1199.2 1 100
5 L 1716.76 10 (2)
5X L XREF=EG
5 CL J$from (N,N'G), G(THETA) excludes J=0
2 G 1280.2 1 100
6 L 1828.76 10 (2)
6X L XREF=AFKME
6 CL J$from (N,N'G)
2 G 1392.20 10 100
7 L 1841.42 7 1+,2+
7X L XREF=AEGKL
7 CL J$G's to 0+ and 2+, L=2 in (D,3HE). Probable excitation in
72CL (P,P') favors 2+
2 G 1404.90 10 100 5
1 G 1841.40 10 69 3
8 L 1851.35 9 (2+)
8X L XREF=AEHF
8 CL J G's to 2+ and 4+, LOGFT=5.3, (N,N'G)
3 G 723.00 10 100 3
2 G 1414.80 10 39.3 12
? 1 G 1851.7 4 1.1 LE
9 L 1947.68 9 1+,2+
9X L XREF=ACEFKL
9 CL J G's to 0+ and 2+, L=2 in (D,3HE)
2 G 1511.10 10 100 3
1 G 1947.76 20 5.3 4
10 L 1989.34 10 (2+,3-)
10X L XREF=ACEFGJK
10 CL J$LOGFT=5.8, GAMMA to 2+, probably excited in COUL. EX. and (E,E')
2 G 1552.78 10 100
? 11 L 2088.61 10(1,2+)
? 11X L XREF=ACE
? 11 CL J GAMMA to GS
1 G 2088.60 10 100
12 L 2094.46 20 3(-),4(+)
12X L XREF=EGC
12 CL J$G to 2+, J GE 3 from excit function in (N,N'G)
2 G 1657.9 2 100
13 L 2117.39 9 (2)+
13X L XREF=EAL
13 CL J$G(THETA) in (N,N'G), G to 0+, L=2 in (D,3HE)
2 G 1680.8 1 100 8
1 G 2117.5 2 41 8
14 L 2131.26 20
14X L XREF=CEG
2 G 1694.7 2 100
15 L 2140.84 10(1,2,3)
15X L XREF=EAK
15 CL J LOGFT=6.0, GAMMA to 2+
2 G 1704.28 10 100
16 L 2191.05 13 6+ 0.30 PS 4
16X L XREF=CEFGJK
16 CL J$E1 from 7-, COUL. EX. GAMMA to 4+,L=6 in (P,P')
3 G 1062.70 10 100 E2 0.005
3 CG M$from COUL. EX.
33 G BE2W=19 3
17 L 2236.05 22
17X L XREF=EFM(*)
3 G 1107.7 2 100
18 L 2263.00 13 5-
18X L XREF=CEFGKLM(*)
182 L BE5W=10.8 25
18 CL J$(E,E'), stretched E1 to 4+ in (D,PNG), J GE 3 in (D,6LI).
182CL Possibly CONF=((P,S1/2,-1)(P,H11/2,-1))
3 G 1134.65 10 100 E1
19 L 2264.06 20 1,2,3
19X L XREF=AEIKM(*)
19 CL J$LOGFT=6.2, (N,N'G)
2 G 1827.5 2 100
20 L 2295.66 10
20X L XREF=E
2 G 1859.1 1 100
21 L 2300.35 13 (2+)
21X L XREF=AEF
21 CL J$G's to 2+,4+, J LE 2 from excitation function in (N,N'G)
3 G 1172.00 10 100 11
? 2 G 1863.3 3 21 6
22 L 2300.70 17 7- 6.7 NS 5
22X L XREF=FKC
222 L BE7W=3.9 15
22 CL T$from (D,PNG)
22 CL J$(E,E')
16 G 109.65 11 100 E1 0.3
163 G BE1W=1.8E-5 2
23 L 2359 5
23X L XREF=CD
24 L 2385.9 4 1(+),2+
24X L XREF=AEL
24 CL J$G to 0+, L=0,2 in (D,3HE)
1 G 2385.9 4 100
? 25 L 2395.92 25 (2+,3-)
? 25X L XREF=ACG
? 25 CL J$possible G's to 2+,4+ in 204AU B-, probably excited in (P,P'),
? 252CL (E,E')
7 G 554.7 3 100 15
2 G 1959.0 4 10 LE
26 L 2465.46 20 (1,2,3)+
26X L XREF=ACEGL
26 CL J$L=2 in (D,3HE), possible observation in (E,E'), (P,P') favors 2+
2 G 2028.9 2 100
27 L 2514.55 22
27X L XREF=CEGJ
3 G 1386.2 2 100
28 L 2568.95 13
28X L XREF=CE
3 G 1440.6 1 100
29 L 2628.26 10
29X L XREF=CDE
2 G 2191.7 1 100
30 L 2675.33 18 3-
30X L XREF=CEGIJ
302 L BE3W=24 2
30 CL J$from (e.e'), (A,A') and (P,P'). Collective octupole vibration
3 G 1547.0 2 79 16
2 G 2238.7 3 100 20
31 L 2724.05 24 GE 5
31X L XREF=CF
31 CL J G deexcitation in (D,PNG)
21 G 423.7 2 100 20
? 19 G 460.5 10 25 AP
32 L 2726.7 3 (2+,3)
32X L XREF=AKC
32 CL J GAMMA to 4+, LOGFT=6.0
6 G 897.9 6 81 51
3 G 1598.3 3 100 19
33 L 2760.60 24 GE 3
33X L XREF=CFKLMG
33 CL J GAMMA to (5)- and possibly to 6+
18 G 497.6 2 100 20
? 16 G 569.5 10 30 AP
34 L 2812.83 24 3-
34X L XREF=ACG
342 L BE3W=8.0 8
34 CL J$L=3 in (P,P'), (E,E')
2 G 2376.26 24 100
35 L 2866 4
35X L XREF=CGL
36 L 2925 37
36X L XREF=C
37 L 3021 4 4+
37F L FLAG=P
37X L XREF=CG
372 L BE4W=4.95 18
38 L 3112 4 (4+)
38F L FLAG=P
38X L XREF=CGM
39 L 3190 15 2+,3+
39X L XREF=CL
39 CL J$from (D,3HE)
40 L 3227 4 (5-)
40F L FLAG=P
40X L XREF=CG
41 L 3315 4 3-
41F L FLAG=P
41X L XREF=CGL
412 L BE3W=6.3 7
42 L 3364 4 5-
42F L FLAG=P
42X L XREF=CG
422 L BE5W=9.5 13
43 L 3417 4
43X L XREF=CG
44 L 3439 4
44X L XREF=G
45 L 3496 5
45X L XREF=G
46 L 3528 6
46X L XREF=CGM
47 L 3585 4
47X L XREF=CG
48 L 3618 6
48X L XREF=G
49 L 3664 9
49X L XREF=CG
50 L 3697 5
50X L XREF=G
51 L 3712 7
51X L XREF=CG
52 L 3750 4
52X L XREF=CGL(*)
53 L 3779 4
53X L XREF=CGL(*)
54 L 3833 8
54X L XREF=CG
55 L 3869 7
55X L XREF=CGL
56 L 3923 9
56X L XREF=GC
57 L 3954 10
57X L XREF=CG
58 L 4113 5 4+
58F L FLAG=P
58X L XREF=CG
582 L BE4W=6.6 8
59 L 4164 5
59X L XREF=CG
60 L 4225 6
60X L XREF=G
61 L 4262 5
61X L XREF=G
62 L 4321 6
62X L XREF=G
63 L 4356 6
63X L XREF=CG
64 L 4406 6
64X L XREF=CG

terroreman
20-12-2006, 12:40
204Hg *204AU B- DECAY 1984CR01 94NDS 199411
204 80 I 18 23 0 15 1204AU 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
204AU P 0 (2-) 39.8 S 9 3800 SY
N 0.91 10 1 1.0
CN NR Based on the assumption that IB- to GS is negligible
1C Natural HG(N,P) E(N)=14 MEV; gammas GE(LI), GG, G(T) (1984Cr01)
CG From 1984Cr01, assignment to 204AU based on T1/2 and on
2CG GG-coin; other: 1972Pa06. For EG<400 sensitivity was reduced by shield.
CG E(D) Assigned to both 204AU and 202AU (1984Cr01)
CG M From adopted G's
1C HG(N,P) E(N)=14-15 MEV; gammas GE(LI), GG-coin scin-GE(LI), BG-coin
2C scin-GE(LI). Earlier assignment by 1967Wa23 of T1/2=4 S, to 204AU, is
3C not confirmed by 1972Pa06.
CG All intense gammas are in coin with EB>500.
CB Endpoint energy of AP 3300 with T1/2=30-40 S can belong
2CB to the decay of either 202AU or 204AU. 1967Wa23 report
3CB E(B-)=3500 200 with T1/2 AP 30 S and E(B-)=4500 300 with
4CB T1/2 AP 4 S. 1972Pa06 deduce a weak B- feeding to 204HG GS
5CB from the high RI(204HG)/RI(202HG) ratio. 1984Cr01 deduce IB- to GS<10%
6CB from estimate of (N,P) cross sections; other IB- branches are from
7CB G+CE intensity balance, assuming negligible feeding to GS
CB LOGFT Uncertainty does not include the uncertainty in Q-.
CL J From adopted levels
0 G 654.9 4 9.0 8
0F G FLAG=D
0 CG T1/2=70 S 20, may be due to 203AU B- decay (the value in
02CG the literature is 53 S 2 for EG AP 690 KEV. 654.6G was reported by
03CG 1972Ba53)
0 G 1817.4 6 0.16 7
1 L 0 0+
B 10 LT 8.5 GT 1U?
S B EAV= 1567.92 $
2 L 436.57 5 2+
1 G 436.56 5 100 4 E2 0.04
3 L 1128.30 134+
B 2 LT 8.4 GT 1U?
S B EAV= 1078.48 $
2 G 691.74 15 26.4 8 E2
4 L 1828.72 12 (2)
B 21.7 6 5.4 1
S B EAV= 808.98 $
2 G 1392.15 11 24.2 6
5 L 1841.39 11 1+,2+
B 4.5 3 6.1 1
S B EAV= 803.57 $
2 G 1404.82 12 4.24 20
1 G 1841.38 19 2.91 11
6 L 1851.29 11 (2+)
B 30.9 7 5.3 1
S B EAV= 799.35 $
3 G 723.00 16 24.4 7
2 G 1414.72 11 9.6 3
? 1 G 1851.7 4 0.28 LE
? 1F G FLAG=D
7 L 1947.70 11 1+,2+
B 26.5 7 5.2 1
S B EAV= 758.41 $
2 G 1511.10 12 27.7 7
1 G 1947.76 20 1.47 11
8 L 1989.33 15 (2+,3-)
B 5.7 2 5.8 1
S B EAV= 740.80 $
2 G 1552.76 14 6.51 19
9 L 2088.78 19 (1,2+)
B 1.1 1 6.5 1
S B EAV= 698.83 $
1 G 2088.77 19 1.15 7
10 L 2117.0 5 (2)+
B 0.20 7 7.3 5
2 G 1680.4 5 0.22 7
2 CG E$placement by evaluator based on the placement of the 1680.9 1
22CG GAMMA in (N,N'G)
11 L 2140.81 17 1,2,3
B 3.1 1 6.0 1
S B EAV= 676.99 $
2 G 1704.24 16 3.42 14
12 L 2264.37 19 1,2,3
B 2.0 2 6.2 1
2 G 1827.80 18 2.23 14
2 CG E$placement by evaluator based on the placement of the 1827.4 1
22CG GAMMA in (N,N'G)
13 L 2300.3 8(2)
3 G 1172.0 7 1.8 4
14 L 2386.4 9 1(+),2+
B 0.10 5 7.2 3
1 G 2386.4 9 0.11 5
1 CG E$placement by evaluator based on the placement of the 2385.9 4
12CG GAMMA in (N,N'G)
? 15 L 2395.6 4 (2+,3-)
? 15 CL E$not seen in (N,N'G)
? 5 G 554.7 3 3.0 5
2 G 1959.0 4 0.29 LE
2F G FLAG=D
16 L 2466.0 3 (1,2,3)+
B 0.34 6 6.9 1
2 G 2029.4 3 0.38 6
2 CG E$placement by evaluator based on the placement of the 2028.9 2
22CG GAMMA in (N,N'G)
17 L 2726.7 3 (2+,3)
B 0.6 2 6.0 2
S B EAV= 436.60 $
4 G 897.9 6 0.30 19
3 G 1598.4 3 0.37 7
18 L 2812.84 25 3-
B 0.66 7 5.9 1
S B EAV= 402.44 $
2 G 2376.26 24 0.72 7

204Hg *204TL EC DECAY 94NDS 199411
204 80 I 1 0 0 1 1204TL 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
204TL P 0 2- 3.78 Y 2 347.3 15
N 0.0290 12 1
CN BR$from I(XK)=1.64% 7 of 1990Sc08, K fluorescent yield=0.965 and
2CN CK/EC=0.5867 16 (based on Q=347.3 15 and theory for first forbidden
3CN unique EC decay). Other: 1962Le05,
2CN 1964Ch17, 1961Jo12, 1966Kl02, 1967Ha39, 1980La02.
1C CL/CK=0.42 5 (1961Jo12), 0.48 4 (1963Ro32), 0.60 6 (1964Ch17),
2C 0.55 5 (1966Kl02). From Q value and EC decay theory CL/CK=0.513 4
C 3.2E-5 5 internal bremsstrahlung photons per CK (1973La17).
2C 2.17E-5 26 photons per CK (1979Zi02). Q+ of 357 15 deduced
3C (1979Zi02).
CG No gammas detected. XK absolute intensities studied in
2CG 4PI geometry. XKA2=0.47 2, XKA1=0.81 3, XKB1=0.273 10, XKB2=0.081 3
3CG per 100 decays (1990Sc08).
1 L 0 0+
E 100 9.521 21 1U
S E CK=0.5867 16 $CL=0.3007 11 $CM+=0.1126 5
CE E E(EC)=385 20 (1973La17), 376 20 (1956Ju07), 393 10 (1962Bi04)

204Hg *204HG(E,E') 1989BUZP 94NDS 199411
204 80 I 60 0 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
C 93.7% 204HG, 6LI-204HG amalgam target. E(E)=83-477 MEV,
2C mag spect. FWHM=8E-3% to 3E-2%. PWBA analysis (1989BuZP)
CL J$From 1989BuZP, based on fitting the cross sections as functions of
2CL the momentum transfer with PWBA calculations.
CL E$The listed uncertainties are statistical only; the systematic
2CL errors are estimated by 1989BuZP to range from 2 KEV for levels below
3CL 2462 KEV to 5 KEV for levels above 4413 KEV.
1 L 0 0+
2 L 436.7 23 2+
22 L BE2=0.429 5
3 L 1128 6 4+
32 L BE4=45E-3 6
4 L 1636 12 0+
4 CL M(E0)=1.06 e(fm){+2} 70
5 L 1944 33
6 L 1974 60
7 L 2047 70
8 L 2090 AP
9 L 2124 30
10 L 2200 60
11 L 2262 5 5-
112 L BE5=41E-3 9
12 L 2299 7 7-
122 L BE7=32E-4 13
13 L 2359 5
14 L 2397 12
15 L 2462 29
16 L 2507 40
17 L 2570 AP
18 L 259E1 12
19 L 2673 6 3-
192 L BE3=42E-2 4
20 L 2719 7
21 L 2730 AP
22 L 2760 AP
23 L 2813 7 3-
232 L BE3=14E-2 2
24 L 2883 43
25 L 2925 37
26 L 3017 28 4+
262 L BE4=40E-3 13
27 L 3096 18
28 L 3187 70
29 L 3222 24
30 L 3316 9 3-
302 L BE3=109E-3 13
31 L 3361 8 5-
312 L BE5=36E-3 5
32 L 3426 15
33 L 3475 14
34 L 3539 70
35 L 3594 35
36 L 3670 AP
37 L 3720 AP
38 L 3750 70
39 L 3820 70
40 L 3860 AP
41 L 3919 34
42 L 3968 29
43 L 4033 15
44 L 4100 17 4+
442 L BE4=54E-3 6
45 L 4147 14
46 L 4210 AP
47 L 4245 7
48 L 4348 11
49 L 4380 AP
50 L 4413 15
51 L 4493 9
52 L 4539 7
53 L 4610 27
54 L 4663 27
55 L 470E1 10
56 L 4723 7
57 L 4815 13
58 L 4895 24
59 L 4915 26
60 L 4959 60

204Hg *204HG(N,N'G) 1989GA07 94NDS 199411
204 80 I 27 31 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
C E(N)=1.5-3 MEV, 98% 204HG, G(THETA) GE(LI), excitation function
2C 1.5 to 3 MEV (1989Ga07).
CG RI$At E(N)=2.80 MEV, uncertainties include 5% syst uncertainty for
2CG EG>500 and 10% syst uncertainty for EG<500
CL J$From 1989Ga07 based on G(THETA), G deexcitation, and excit function.
0 G 615.7 3 2.8 11
0 G 738.1 3 3.7 14
0 G 806.7 3 5.9 13
1 L 0 0+
2 L 436.57 4 2+
1 G 436.58 4 1000
3 L 1128.37 9 4+
2 G 691.8 1 331 18
4 L 1635.77 11 0+
2 G 1199.2 1 27 3
5 L 1716.77 11 (2)
2 G 1280.2 1 26 3
6 L 1828.87 11 2+
2 G 1392.3 1 79 5
7 L 1841.49 8 1,2+
2 G 1405.0 1 36 3
1 G 1841.4 1 25.3 24
8 L 1851.42 9 (2+)
3 G 723.0 1 55 4
2 G 1414.9 1 22.2 22
9 L 1947.67 11 (2+)
2 G 1511.1 1 68 5
10 L 1989.37 11 (2+)
2 G 1552.8 1 62 4
11 L 2088.51 10 (2+)
1 G 2088.5 1 27 3
12 L 2094.48 21 3,4+
2 G 1657.9 2 14.7 21
13 L 2117.48 10 2+
2 G 1680.9 1 32 3
1 G 2117.5 2 13 3
14 L 2131.28 21
2 G 1694.7 2 11.8 21
15 L 2140.88 11 (1,2,3)
2 G 1704.3 1 29 3
16 L 2191.17 14 6+
3 G 1062.8 1 15.1 18
17 L 2236.07 14
3 G 1107.7 1 31 3
18 L 2263.07 14 5-
3 G 1134.7 1 31 3
19 L 2263.98 11
2 G 1827.4 1 37 3
20 L 2295.68 11
2 G 1859.1 1 29 3
21 L 2300.32 13 (2)
3 G 1172.0 1 27 3
2 G 1863.3 3 5.8 17
22 L 2385.9 4
1 G 2385.9 4 19 4
23 L 2465.48 21
2 G 2028.9 2 17 3
24 L 2514.57 22
3 G 1386.2 2 10.8 18
25 L 2568.97 14
3 G 1440.6 1 7.7 15
26 L 2628.28 11
2 G 2191.7 1 4.4 10
27 L 2675.34 18 (3-)
3 G 1547.0 2 9.2 19
2 G 2238.7 3 11.6 23

terroreman
20-12-2006, 12:42
204Hg *204HG(P,P') 1991HO07 94NDS 199411
204 80 I 47 0 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
C E(P)=28 MEV, 98.2% 204HG, mag spect FWHM=17 KEV, p'(THETA), coupled
2C channel calc (1991Ho07).
CL J$From 1991Ho07 based on p'(THETA) and on unpublished (E,E') data of
2CL 1989BuZP
CL S$BETA(L) values are quoted based on coupled-channels analysis
1 L 0 0+
2 L 437 3 2+ -0.069
3 L 1128 4 4+ -0.049
4 L 1632 11 0+
5 L 1714 6
6 L 1836 5
7 L 1985 7
8 L 2099 8
9 L 2137 9
10 L 2183 4 6+ -0.013
11 L 2257 4 5- 0.033
12 L 2293 4 7- -0.021
13 L 2398 9
14 L 2463 9
15 L 2509 5
16 L 2672 4 3- 0.089
17 L 2710 4
18 L 2759 4
19 L 2813 4 3- 0.046
20 L 2866 4
21 L 3021 4 (4+) 0.016
22 L 3112 4 (4+) 0.016
23 L 3227 4 (5-) 0.020
24 L 3315 4 3- 0.048
25 L 3364 4 5- 0.049
26 L 3417 4
27 L 3439 4
28 L 3496 5
29 L 3528 6
30 L 3585 4
31 L 3618 6
32 L 3664 9
33 L 3697 5
34 L 3712 7
35 L 3750 4
36 L 3779 4
37 L 3833 8
38 L 3869 7
39 L 3923 9
40 L 3954 10
41 L 4113 5 4+ 0.039
42 L 4164 5
43 L 4225 6
44 L 4262 5
45 L 4321 6
46 L 4356 6
47 L 4406 6

204Hg *204HG(D,PNG) 1984SC19 94NDS 199411
204 80 I 14 16 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
C 98% 204HG, E(D)=25 MEV. PG-coin GE(LI) plastic scin; GG; CE(T)
2C magnetic spectrometer; G(THETA) (1984Sc19)
CG RI Estimated uncertainty 10-20%
CG M From G(THETA) and CE (1984Sc19)
CL J$From 1984Sc19 based on G(THETA) and EKC, and from adopted levels
1 L 0 0+
2 L 436.60 10 2+
1 G 436.6 1 100 E2
3 L 1128.50 15 4+
2 G 691.9 1 63
4 L 1828.6 5 (2)
2 G 1392.0 5 3.1
5 L 1851.69 24 (2+)
3 G 723.2 2 3.7
2 G 1414.8
6 L 1947.3 5 1+,2+
2 G 1510.7 5 2.6
7 L 1988.7 5 (2+,3-)
2 G 1552.1 5 2.6
8 L 2190.90 25 6+
3 G 1062.4 2 17
9 L 2236.0 4
3 G 1107.5 3 2.9
3 CG E$placement based on the placement of the 1107.7 1 GAMMA in (N,N'G)
10 L 2262.9 4 5-
3 G 1134.4 3 18 E1
3 CG M from CE and G(THETA) this is a stretched E1.
11 L 2300.5 4 (2)
3 G 1172.0 3 3.1
3 CG E$placement based on the placement of the 1172.0 1 GAMMA in (N,N'G)
12 L 2300.5 4 7- 6.7 NS 5
12 CL J see adopted levels
8 G 109.6 2 6.0 E1
13 L 2724.2 4 GE 5
11 G 423.7 2 4.0
? 10 G 460.5 10 1 AP
14 L 2760.4 4 GE 3
10 G 497.5 2 3.2
? 8 G 569.5 10 1 AP

204Hg *204HG(D,D') 1972MO12 94NDS 199411
204 80 I 4 0 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
C E(D)=17 MEV, 95.8% 204HG; FWHM=9 KEV; d'(THETA) (1972Mo12).
1 L 0
2 L 443 8
3 L 1140 12
? 4 L 1851 15

204Hg *204HG(A,A') 1981BA45 94NDS 199411
204 80 I 5 0 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
1C 84% 204HG, E(A)=27 MEV, magnetic spectrograph A'(THETA), FWHM=40 KEV
2C coupled-channels analysis (1981Ba45).
CL J From 1981Ba45 based on A'(THETA).
1 L 0 0+
2 L 437 5 2+
2 CL BETA(2)=0.061
3 L 1128 5
4 L 2272 5
5 L 2674 5 (3-)
5 CL BETA(3)=0.076 octupole vibration

204Hg *COULOMB EXCITATION 94NDS 199411
204 80 I 7 5 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
C 98% 204HG sulphide target. 1040-MEV 208PB beam. Particle-GAMMA coin
2C GE(LI) and position-sensitive plate avalanche detectors, G(THETA).
3C BE2 values are normalized to 0.0849 for the 2+ to 0+ transition (an
4C average of 1981Es03 and 1979Bo02). A 5% systematic error was included
5C in the quoted uncertainties in BE2 (1985Ag01).
1C 4HE 13.5-16.5 MEV, 12C 45-56 MEV, 16O 63-65 MEV; 93% 204HG
2C annular SI detector for backward scattering. E(P)=18 MEV E-DE counter
3C telescope, Winther-de Boer analysis (1981Es03).
1C Natural HG; 15 MEV 4HE, 56-64 MEV 16O; gammas GE(LI); MOME2 of
2C 436 level measured by reorientation effect (1979Bo02)
C E(A)=11-15 MEV, E(16O)=56 MEV, Winther-de Boer analysis (1977BoYP)
C E(16O)=36 MEV, RI(THETA) in vacuum and HE gas (1974Do01)
1C E(12C)=54, 55 MEV. 92.6% 204HG, mag spect. BE3 deduced (1991Li03).
CG RI From 1985Ag01
CG E$From 1985Ag01, 1979Bo02
CG M$From 1981Es03, 1985Ag01
CL J From adopted levels
1 L 0 0+
2 L 436.55 32+
22 L MOME2=0.40 20 (1981ES03)
2 CL MOME2: 0.39 20 or 0.24 20 (1979Bo02)
21CL From attenuation of G(THETA) of recoils in vacuum
22CL OMEGA**2*TAU=4.1 7 (changed by evaluator from 4.6 8 of 1974Do01 because
23CL of change in T1/2(436 level) from 36 PS to 40.4 PS); therefore,
24CL MOMM1(204HG)/MOMM1(198HG)=0.89 8. Using MOMM1(198HG)=1.1 2
25CL (1977Ha26,1964Ko15) we get MOMM1(204HG)=1.0 3. Others: 1970Ka09,
2xCL 1973Di15
1 G 436.55 3 100 E2 0.04
1 CG BE2=0.0849 8 (from 0.0846 10 (1981Es03) and 0.0854 12
1xCG (1979Bo02))
3 L 1128.45 21 4+
2 G 691.9 2 19.9 6 E2 0.013
2 CG BE2=0.121 9 (1985Ag01), 0.19 6 (1981Es03)
4 L 1987.9 (2+,3-)
? 2 G 1551.3 2 0.11 1
? 2 CG Placement from (D,PNG) and 204AU B- decay, adopted
? 22CG EG=1552.78 10
5 L 2191.0 4 6+
3 G 1062.5 3 1.36 4 E2 0.005
3 CG BE2=0.139 17 (1985Ag01)
6 L 2515.1 6
3 G 1386.6 5 0.24 3
3 CG E$placement based on (N,N'G), adopted EG=1386.2 2
7 L 2682 3 3-
7 CL E seen in (P,P') of 1981Es03 and 1991Ho07
72 L BE3=0.37 5
7 CL The BE3 value corresponds to 22 W.u. ^and is comparable
72CL to the values for collective 3- states in the even HG isotopes GE 198
73CL (in (E,E') the measured BE3W=24 2)

204Hg *205TL(E,E'P) 1987QU01 94NDS 199411
204 80 I 4 0 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
C E(E)=410 MEV, spectra at the missing momentum values of
2C 15, 80, and 160 ^MEV/c were measured. FWHM=135 KEV for the proton
3C energy.
CL S$Spectroscopic factor for 3s1/2 is listed.
1 L 0 0.32 3
2 L 1640 10 0.22 2
3 L 2370 20 0.08 1
4 L 2620 30 0.05 1

204Hg *205TL(MU-,NG) 94NDS 199411
204 80 I 14 13 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
C The decay scheme is suggested by evaluator on the basis of
2C 204AU B- decay and (D,PNG).
CL J From adopted levels
CG RI Per 100 MU- stops in natural TL (1972Ba53)
CG E From 1972Ba53 except for the 436G from 1978Du01
CG E(E) Assigned to 204HG by evaluator
1 L 0 0+
2 L 436.551 8 2+
1 G 436.551 8 25.4 41
3 L 1128.26 17 4+
2 G 691.71 17 7.6 9
2F G FLAG=E
4 L 1827.9 4 (2)
2 G 1391.3 4 0.68 17
2F G FLAG=E
5 L 1841.4 10 1+,2+
S 2 G 1404.82
6 L 1948.2 3 1+,2+
2 G 1511.6 3 1.5 3
2F G FLAG=E
7 L 1990.5 4 (2+,3-)
2 G 1553.9 4 0.96 24
2F G FLAG=E
8 L 2140.5 4 1,2,3
2 G 1703.9 4 0.7 2
2F G FLAG=E
9 L 2191.0 11 6+
S 3 G 1062.7
10 L 2262.9 3 5-
3 G 1134.67 20 3.0 6
3F G FLAG=E
11 L 2264.6 5 1,2,3
2 G 1828.0 5 0.50 16
12 L 2300.6 11 7-
9 G 109.68 12 0.98 18
9F G FLAG=E
13 L 2726.2 6 (2+,3)
3 G 1597.9 5 0.62 17
3F G FLAG=E
14 L 2760.7 4 GE 3
10 G 497.8 3 0.77 22
10F G FLAG=E

204Hg *205TL(D,3HE) 1989GR09 94NDS 199411
204 80 I 21 0 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
C JPI(target)=1/2+
1C Enriched 205TL, E(D)=45 MEV, magnetic spectrometer. Results are
2C preliminary, no uncertainties given (1983AgZY)
1C 99.5% 205TL, E(D)=52 MEV, polarized beam average polarization of 0.54
2C FWHM=110 KEV for vector-polarized beam, FWHM=70 KEV for unpolarized
3C beam. DWBA calc normalized to 208PB(D,3HE) (1989Gr09)
CL E,L$From 1989Gr09, DE AP 15 KEV. See also: 1987Cl01
CL J$From 1989Gr09 based on L transfer, vector analyzing power and
2CL previous NDS assignments.
CL E(C) Unresolved multiplet
CL S$Spectroscopic factors for L=0 are from 3s1/2, for L=2 below 2.7
2CL MEV are from 2d3/2 and above 2.7 MEV from 2d5/2 (except for 3320
3CL level 2d3/2), for L=5 are from 1h11/2. For cases of two L values,
4CL the ^S factors are listed in the order s1/2,d3/2,h11/2,d5/2. In
5CL cases where one of the L values is even and the other is odd, it
6CL is clear that at least two levels with opposite parities contribute.
1 L 0 0+ 0 .21
2 L 437 2+ 2 .18
3 L 1130 4+
4 L 1630 (0,1)+ 0 .16
5 L 1840 1+,2+ 2 .14
6 L 1950 2+ 2 .28
7 L 2060 AP (1,2,3)+ 2 .05
8 L 2120 (1,2)+ 2 .14
9 L 2250 5- 2,5 .04, .21
9F L FLAG=C
10 L 2380 (0,1,2,3)+ 0,2 .05, .04
10 CL J$JPI=1+ if only one state contributes
11 L 2470 (1,2,3)+ 2 .03
12 L 2650 (0,1,2,3)+ 0,2 .08, .03
12F L FLAG=C
13 L 2770 2,5 .20, .16
13F L FLAG=C
14 L 2890 2,5 .16, .10
14F L FLAG=C
15 L 3050 2,5 .12, .05
15F L FLAG=C
16 L 3190 (2,3)+ 2 .41
17 L 3320 2,5 .07, .05
17F L FLAG=C
18 L 3460 (1,2,3)+ 2 .13
19 L 3600 2,5 .03, .11
19F L FLAG=C
20 L 3770 (1,2,3)+ 2 .05
21 L 3890 (0,1,2,3)+ 0,2 .05, .06

204Hg *208PB(D,6LI) 1979BE14 94NDS 199411
204 80 I 9 0 0 0 0 0
H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$
1C E(D)=55 MEV; magnetic spectrograph, E DE counter; 99% 208PB,
2C FWHM=150-300 KEV; 6LI(THETA). ALPHA clustering calculated (1979Be14)
CL J From 1979Be14 based on DWBA, natural parity favored
1 L 0 0+
2 L 430 50 2+
3 L 1085 50(4+)
? 4 L 1810 50
5 L 2240 50 GE 3
6 L 2740 50 GE 2
7 L 2800 50
8 L 3040 50 GE 2
9 L 3550 50 GE 2

@ عبد الله الجهني @
29-12-2006, 23:06
أخي ما حولك أحد لو أعرف كان علمتك أنا آسف

Albert Einstein
31-12-2006, 13:04
نعم امور بسيطه

martin
04-01-2007, 07:12
الأمر سهل و غاية في البساطة
هذه عملية تحليل إشعاعي للمادة و المراحل الإنتقالية و المتتابعة
و الأرقام قد تكون أوزان للمواد المتفككة أو المواد المتراكمة أو الموادذات النسب المتفارقة
التي تسمى بمواد ما بعد اإشعاع
و الرموز E,M,L,K,X رموز للمواد الناتجة من المراحل الإنتقالية
و هناك للعلم مواد أكثر تعقيدا في حال تحليلها أو تفكيكها
أعتقد أن هذه المادة المشعة عند تحليلها و انتاج هذه المعادلات فهي مادة مشعة بسيطة جدا

و لتدعيم بحثك أنصحك بالرجوع للمتخصصين لبحث أكثر دقة

شكرا

martin

martin
04-01-2007, 07:15
و لكن أنا غير متأكد من كون هذه معادلة إشعاعية فأنا في جامعتي
رأينا معادلات التحليل الإشعاعي كانت مختلفة قليلاً و لكن ربما هذه ربما تكون معادلة
و حللتها بشكل مبسط في ردي السابق

الله يعينك

martin

terroreman
04-01-2007, 20:37
اشكرك اخي مارتين نعم انها تحاليل لمادة مشعة هي الزئبق 204hg 204 وقابلية تحويل الزئبق العادي الى زئبق مشع
وهذه المعادلة وغيرها ربما قد يساعد على الوصول الى نتيجة مارايك اريد التفاعل والتوضيح ربما لانني من اصحاب الكيمياء الصيدالانية

martin
04-01-2007, 21:47
للزئبق عشرة نظائر سبعه منها مستقره ثم
نظير غير مستقر و نظيران ينتجان أشعة بيتا
السالبه و أحد هذين النظيرين صناعى و هو
المعروف بالزئبق الأحمر. وهذه النظائر هي:
( 80 بق 196 ) و هو نظير وجوده فى الطبيعه 0.1%
(80 بق 198 ) وهو نظير وجوده فى الطبيعه 10%
( 80 بق 199 ) ( 80 بق 200 ) ( 80 بق 201 ) ( 80 بق 202 ) و ( 80 بق 204 ) جميعها نظائر
مستقره فى الطبيعه .

(80 بق 197 ) نظير غير مستقر فى الطبيعه حيث يتحول إلى ذهب كما يلى :
80 بق > 79 ذ 197 + 1 ش 0
( 80 بق 203 ) نظير طبيعى يشع أشعة بيتا السالبه
( 80 بق 205 ) نظير صناعى يشع إيضا أشعة بيتا
السالبه و أما النظير الطبيعى فلونه فضى يميل إلى الحمره أما النظير الصناعى فنظيره يميل للون
أكسيد الزئبق الأحمر مع كونه سائل ميتالك

اذا و جدت ما هو مفيد لشرح هذه المعادلة سوف أكتبها و أحللها بإذن الله
و اذا ما قدرت إعذرني على نسياني للمادة التي أخذتها في الجامعة عن التفكك و التحلل الإشعاعي

أنا ممكن أراسل الدكتور الي أعطاني المادة و أشوفة
الله يكتب إلي فيه الخير

martin

terroreman
18-01-2007, 17:21
عزيزي مرتين القي نظره على هذا الموقع احنا بدنى الوصول الى طريقة العمل الزئبق 203 او 205 من هذه المعادلات

http://ie.lbl.gov/toi/nuclide.asp?iZA=800205

http://ie.lbl.gov/ensdf/ensdf2/a201_220/205Hg.enx

وهذا ايضا بس مافهمت منيح الانجليزي دورت على نسخة منه بالفرنسية لم اجد يبدو مفيد جدا

Production of Hg198 as a Possible Source of an Improved Wave-Length Standard

Jacob H. Wiens
Department of Physics, University of California, Berkeley, California
Received 26 September 1946

The green line 5461A from any of the even isotopes of mercury is superior, in many respects, to the red line 6438A of cadmium for a primary standard of wave-length. The mercury isotope of mass 198 was produced by utilizing the nuclear transformation 79Au197+0n1→80Hg198+-1β0

One ounce of pure gold was sealed in a quartz tube and a section of 5-mm inside diameter quartz tube was sealed on the quartz-gold tube. The system was outgassed and 4-mm Hg pressure of spectroscopically pure argon was admitted and the tube was sealed. The gold was exposed to stray neutrons near the sixty-inch cyclotron for ten months. The gold was then heated and the mercury was condensed in the 5-mm quartz tube. The mercury vapor in the presence of argon gas was excited by means of a 100-megacycle oscillator and the spectrum was observed. The lines produced by the discharge were mercury lines, and the position of the lines of a Fabry-Perot etalon spectrogram agree with the position assigned by Schüler and Jones to the mercury isotope of mass 198. Larger quantities of gold exposed to known superior sources of neutrons will produce an adequate supply of the isotope for scientific purposes.

©1946 The American Physical Society
ممكن يتفاعل اعضاء المنتدى ويشاركونا ببعض المعلومات و الاقترحات وانت اخي مرتين شو رايك في كل هذا ممكن
بعض التوضيحات كما عندي سؤال هل نستطيع زيادة النيترونات و البروتونات لمادة ما الزئبق على سبيل المثال وما رئيكم بانبوب الذي يوجد خلف شاشة التلفزيون قراءت مره انه مدفع جيد للنيترونات او لاشعة بيتا لا اتذكر هذا جيدا بس ممكن حدا من المنتدى يفيدنا الموضوع مفيد وشيق