ملتقى الفيزيائيين العرب

ملتقى الفيزيائيين العرب (http://www.phys4arab.net/vb/index.php)
-   منتدى فيزياء الـكـــــم. (http://www.phys4arab.net/vb/forumdisplay.php?f=37)
-   -   spin observable (http://www.phys4arab.net/vb/showthread.php?t=45986)

الصادق 02-04-2010 19:52

رد: spin observable
 

السلام عليكم ورحمة الله وبركاته

اختي الكريمة تغريد
شكراً لك على الدعوات الطيبات و اسأله تعالى ان يزيدك من معين عطاءه علما و حلما و فضلا و حكمة و رضوان
حتى يجمعك برفقة سيد الخلق أجمعين محمد صلوات ربي و سلامه عليه و على أصحابه و من والاه
كما اشكرك ايضاً على الكلمات المعبرة للشيخ سيد قطب

شكر الله لك و بارك فيك وجزاك كل خير


تغريـد 17-04-2010 17:09

رد: spin observable
 
اقتباس:

المشاركة الأصلية كتبت بواسطة الصادق (المشاركة 410984)
الان نريد ان نحسب قيمة احتمال ان تتخذ الحالة الذاتية ابساي حالة لف مغزلي الى الاعلى او الى الاسفل فى اتجاه المحور x , ولكن لما كان الاحتمال يساوي مربع سعة الاسقاط, وكان اسقاط المتجه ابساي فى اتجاه المحور x يُعطى بـ حالة لف مغزلي الى الاعلى او الى الاسفل فى اتجاه المحور
http://latex.codecogs.com/gif.latex?...m%20e^{i\phi})
فان مربع سعة الاسقاط يساوي
http://latex.codecogs.com/gif.latex?...ta\cos\phi}{2}

اما احتمال ان تتخذ الحالة ابساي حالة لف مغزلي الى الاعلى او الى الاسفل فى اتجاه المحور y يُعطى بمربع سعة الاسقاط فى اتجاه y :
http://latex.codecogs.com/gif.latex?...m%20e^{i\phi})
اى ان الوزن المقابل يساوي
http://latex.codecogs.com/gif.latex?...ta\sin\phi}{2}

اخيراً احتمال ان تتخذ الحالة ابساي حالة لف مغزلي الى الاعلى او الى الاسفل فى اتجاه المحور z يُعطى بمربع سعة الاسقاط فى اتجاه z:
http://latex.codecogs.com/gif.latex?...s%20\theta}{2}

أخي الكريم الصادق سأكون شاكرة جدا لو تابعت معي هذا المثال

و أرجو منك أن تصوبني إن أخطأت
الحقيقة أن لي بعض التوقعات البسيطة و لكنها ذات أهمية خاصة بالنسبة لي


بداية فيما يتعلق بحساب الاحتمالات وجدت ببعض الحسابات البسيطة أن حسابها بالطريقة التي أوضحتها في المشاركة السابقة مكافئ لحسابها من خلال إيجاد density matrix لكل من متجهي الحالة و ضربهما ثم حساب trace للمصفوفة الناشئة

و عليه حاولت تفسير العبارة التالية في أحد الأبحاث

For example, Let A and B be Bolarizing filters in planes perpendicular to the paricle beam, where A polarizes vertically and B at 45 angle. If the incoming beam is prepared in a state of horizontal polarization, then AoB will transmit no particles, while BoA will transmit particles.

و حاولت تفسير ذلك بأن نسبة الجسيمات التي تعبر ربما يعبر عنها الاحتمال
لأنه كان من الواضح في مشاركة لأخي شمس الخواص أن تلك النسبة تتناسب مع مربع دالة جيب التمام و التي تنجم دائما من خلال عملية الضرب القياسي للمتجهات

و كان واضحا من خلال مشاركاتك هنا أيضا أنعملية حساب الاحتمال مرتبط كثيرا بعملية الضرب القياسي

لذا توقعت تفسيرا للعبارة السابقة أن نسبة الجسيمات التي تتأثر بالجهاز ذا الاستقطاب العمودي على اتجاه استقطابها سيكون مرتبط cos الزاوية بينهما لذا ستكون النسبةصفرا و بالتالي لن تعبر الجهاز الثاني أي جسيمات

و لكن إن تأثرت الجسيمات في البداية بالمؤثر الذي يصنع زاوية 45 درجة فإن نسبة الجسيمات التي تستقطب في ذلك الاتجاه ستكون النصف و ستتغير حالة تلك الجسيمات لتصبح مستقطبة في اتجاه جديد
و بالتالي ستنتفي حالة كونه عمودي على اتجاه استقطاب الجهاو الثاني و بالتالي ستعبر أيضا نصف الجسيمات

و على ذلك توقعت أن النسبة الكلية هي ربع الجسيمات

إن صح ذلك فهو إشارة جيدة لما اقوم به
و لكن عندما حاولت ترجمة ذلك رياضيا لم اصل لنفس النتيجة
أرجو ان اعلم إن أمكن مكان الخطأ في استنتاجي

تغريـد 17-04-2010 17:32

رد: spin observable
 
إذا حاولنا التعبير عن ذلك بلغة المؤثرات و إذا اعتبرنا أن الجسيمات لهالف مغزلي -0.5
فإذا اعتبرنا أن الجسيمات مستقطبة في اتجاه محور x لأعلى و بالتالي فإن المتجه الذاتية الممثلة لها ستكون
http://latex.codecogs.com/gif.latex?...&space;\right)

و بالتالي فإن density matrix الممثلة لها ستكون


http://latex.codecogs.com/gif.latex?...&space;\right)

أن الجهاز A يعمل على استقطاب الجسيمات باتجاه محور y و بالتالي فإن المتجه الذاتي الممثل له هو

http://latex.codecogs.com/gif.latex?...&space;\right)

بينما density matrix الممثلة له

http://latex.codecogs.com/gif.latex?...&space;\right)

بينما B باتجاه الخط المستقيم y=x حيث
http://latex.codecogs.com/gif.latex?...=\frac{\pi}{4}

له المتجه الذاتي

http://latex.codecogs.com/gif.latex?...&space;\right)

بناء على ما سبق فإن density operator الممثل B سيكون

http://latex.codecogs.com/gif.latex?...&space;\right)

تغريـد 17-04-2010 17:48

رد: spin observable
 

فإذا أثرنا بA على تلك الجسيمات فإن نسية الجسيمات التي تمر هي احتمال أن تصبح مستقطبة في اتجاه محور Y و يساوي

http://latex.codecogs.com/gif.latex?...t)&space;)=0.5


و هذا لا يتوافق مع تفسيري الذي توقعته لتلك الفقرة


في حين أنه لوصف الحالة الثانية توقعت التالي


http://latex.codecogs.com/gif.latex?...&space;\right)



و هذا يصف حالة الجسيمات بعد مرورها بالجهاز B


الآن لوصف الحالة بعد المرور بالجهاز A و حساب الاحتمال وجدت


http://latex.codecogs.com/gif.latex?...;=&space;0.604


و هذا أيضا لا يتوافق مع استنتاجاتي الاولية فأين مكمن الخطأ
يبدو أن تجاوزت الحدود في التوقعات

فأرجو أن توضح لي أخي الكريم الصادق جزاك الله كل خير


الصادق 18-04-2010 00:23

رد: spin observable
 
For example, Let A and B be Bolarizing filters in planes perpendicular to the paricle beam, where A polarizes vertically and B at 45 angle. If the incoming beam is prepared in a state of horizontal polarization, then AoB will transmit no particles, while BoA will transmit particles
اختي الكريمة تغريد
حياك الله تعالى

ارجو منك اختي الكريمة توضيح ملابسات المسألة لانه يبدو لي ان الجملة المقتبسة تتحدث فقط عن احتمال المرور او عدم المرور عبر المستقطب و ليس عن الحالة الكمية للف المغزلي للجسيمات العابرة

تغريـد 18-04-2010 18:03

رد: spin observable
 
1 مرفق
اقتباس:

المشاركة الأصلية كتبت بواسطة الصادق (المشاركة 420960)
For example, Let A and B be Bolarizing filters in planes perpendicular to the paricle beam, where A polarizes vertically and B at 45 angle. If the incoming beam is prepared in a state of horizontal polarization, then AoB will transmit no particles, while BoA will transmit particles
اختي الكريمة تغريد
حياك الله تعالى

ارجو منك اختي الكريمة توضيح ملابسات المسألة لانه يبدو لي ان الجملة المقتبسة تتحدث فقط عن احتمال المرور او عدم المرور عبر المستقطب و ليس عن الحالة الكمية للف المغزلي للجسيمات العابرة

شكرا لك أخي الكريم الصادق
نعم ما تقوله يحيح و لكني توقعت إن يكون الأمران مرتبطان ببيعض تماما
الحقيقة لم أجد نسخة الكترونية من البحث نفسه و الذي لم يزد عن الموضوع بأي تفصيل آخر
و لكن هذا البحث المرفق تابع للبحث الأول و يتحدث عن ذات الموضوع و ربما بتفصيل أكثر في المقدمة
وفقك الله أخي الكريم و جزاك كل خير

الصادق 18-04-2010 23:12

رد: spin observable
 
اقتباس:

المشاركة الأصلية كتبت بواسطة تغريـد (المشاركة 421367)
شكرا لك أخي الكريم الصادق
نعم ما تقوله يحيح و لكني توقعت إن يكون الأمران مرتبطان ببيعض تماما
الحقيقة لم أجد نسخة الكترونية من البحث نفسه و الذي لم يزد عن الموضوع بأي تفصيل آخر
و لكن هذا البحث المرفق تابع للبحث الأول و يتحدث عن ذات الموضوع و ربما بتفصيل أكثر في المقدمة
وفقك الله أخي الكريم و جزاك كل خير

اختي الكريمة تغريد
حياك الله تعالى

نعلم ان مؤثر الكثافة يعرف عندما تكون حالة الجسيم الابتدائية غير معروفة بيقين تام اما فى حالة مثال المرشحات F_1, F_2, F_3 فان الكاتب افترض ان F_1 عمودي على اتجاه حركة فيض الجسيمات و F_2 افقي و F_3 يصنع زاوية 45 درجة اذن من هنا نفهم ان اتجاه حركة الجسيمات كان معلوماً قبل اجراء التجربة ( نعرف العمودي و الموازي على اتجاه الحركة) وبالتالي ليس لدينا حالة خليط احصائي

اما مثال تجربة Stern-Gerlach فهو كما اظن مثال لتجربة "نعم-لا" حيث المرشحات فى حالته (الكاتب) تقابل اللف المغزلي فى حالة Stern-Gerlach اي لقد فهمت من قوله (لا استطيع ان اجزم ) ان تجربة "نعم-لا" تقابل فى حالة المرشحات "المرور-عدم المرور" اما فى حالة Stern-Gerlach فهي لقابل لف "اعلى-اسفل". و بكلمات اخرى فان كلتا التجربتان لهما نتيجتين متعاكستين و ان حدثت واحدة فان الثانية تنتفي بالضرورة
اما وجه التشابه الثاني والاهم فهو ترتيب اجراء التجربة (Sequential experiment) فكما قال الكاتب فان تغير ترتيب وضع المرشحات يغير من نتيجة النهائية و هذه يشبه تماماً تجربة Stern-Gerlach فى كونها Sequential experiment ايضاً

هذا والله اعلم

تغريـد 19-04-2010 00:33

رد: spin observable
 
اقتباس:

المشاركة الأصلية كتبت بواسطة الصادق (المشاركة 421551)


اختي الكريمة تغريد
حياك الله تعالى

نعلم ان مؤثر الكثافة يعرف عندما تكون حالة الجسيم الابتدائية غير معروفة بيقين تام اما فى حالة مثال المرشحات F_1, F_2, F_3 فان الكاتب افترض ان F_1 عمودي على اتجاه حركة فيض الجسيمات و F_2 افقي و F_3 يصنع زاوية 45 درجة اذن من هنا نفهم ان اتجاه حركة الجسيمات كان معلوماً قبل اجراء التجربة ( نعرف العمودي و الموازي على اتجاه الحركة) وبالتالي ليس لدينا حالة خليط احصائي

اما مثال تجربة Stern-Gerlach فهو كما اظن مثال لتجربة "نعم-لا" حيث المرشحات فى حالته (الكاتب) تقابل اللف المغزلي فى حالة Stern-Gerlach اي لقد فهمت من قوله (لا استطيع ان اجزم ) ان تجربة "نعم-لا" تقابل فى حالة المرشحات "المرور-عدم المرور" اما فى حالة Stern-Gerlach فهي لقابل لف "اعلى-اسفل". و بكلمات اخرى فان كلتا التجربتان لهما نتيجتين متعاكستين و ان حدثت واحدة فان الثانية تنتفي بالضرورة
اما وجه التشابه الثاني والاهم فهو ترتيب اجراء التجربة (Sequential experiment) فكما قال الكاتب فان تغير ترتيب وضع المرشحات يغير من نتيجة النهائية و هذه يشبه تماماً تجربة Stern-Gerlach فى كونها Sequential experiment ايضاً

هذا والله اعلم


نعم أخي الكريم الصادق
إن أهم ما يعنيني هنا هو كيف تأثرت النتيجة النهائية بترتيب المرشحات

و قد فسرت الأمر كالتالي

إن اتجاه المرشحات المذكور عمودي على الاتجاه لفيض الجسيمات
لنفترض أن اتجاه حركة فيض الجسيمات في اتجاه محور x
و لكن اتجاه استقطاب الجسيمات غير معلوم
أما المرشحات فكل منها يمثل بالمستوى Y-Z
فإذا كان المرشح الأول يعمل مرور الجسيمات المستقطبة في اتجاه Y
بينما المرشح الثاني يعمل على مرور الجسيمات المستقطبة في اتجاه Z
و الثالث في اتجاه Y=Z

و توقعت أن مرور الجسيمات على المرشح الاول سيعتمد في نسبته على الاتجاه الذي كانت الجسيمات في حالتها الأولية مستقطبة في اتجاهه
(فهل هناك طريقة نحسب تلك النسبة هنا و التي توقعت ان تعتمد على مربع دالة جيب التمام بين اتجاه Y بين اتجاه استقطاب الجسيم )
و لكن تلك النسبة من الجسيمات التي تعبر أيضا بمجرد عبورها ذلك المرشح تصبح مستقطبة في اتجاه Y

لذا توقعت أن نسبة ما يعبر المرشح الثاني ستكون صفرا نتيجة للتعامد بين اتجاهي الاستقطاب


و لكن إن مرت الجسيمات على المرشح الثالث قبل المرشح الثاني فإن هناك نسبة ستعبر لأن هذه الجسيمات ستكون مستقطبة في اتجاه Y=X
و بالتالي لن يكون اتجاه استقطابها عموديا على المرشح الثاني
و في هذه الحالة ستعبر نسبة من تلك الجسيمات المرشح الثاني

ومن هنا إن صح ذلك يكون ترتيب المرشحات ذا أهمية كبيرة


علما بأن استندت على أن نسبة الجسيمات التي تعبر تعتمد على مربع جيب التمام من هذه المشاركة
لأخي الكريم شمس الخواص

اقتباس:

المشاركة الأصلية كتبت بواسطة شمس الخواص (المشاركة 219092)
بسم الله الحمد لله و الصلاة و السلام على رسول الله صلى الله عليه و على أله و سلم
السلام عليكم و رحمة الله تعالى و بركاته

.
.
.

لنعتبر مسألة ثنائية البعد في المعلم (x,y) و لنأخذ جهاز تحليل يسمح بمرور الفوتونات الواردة في الاتجاه السيني و لا يسمح بمرور الفوتونات المستقطبة في الاتجاه العيني ، و كما نعلم فان المحلل هو جهاز قياس
مسألة
اذا أتى فوتون - و الذي كما نعلم من نظرية الكم جسيم غير قابل للانقسام- في اتجاه يصنع زاوية a مع المحور السيني فهل سيمر من خلال المحلل أو أنه لن يمر ؟(نعم -لا)
اذا كان هذا الفوتون غير قابل للانقسام فانه و لكي يمر يجب أن يتصرف كفوتون مستقطب بالاتجاه السيني ولكي لا يمر يجب عليه أن يتصرف كفوتون مستقطب في الاتجاه العيني ، بمعنى أخر ان المجرب لن ير الا فوتونا مار من المحلل أو فوتون لم يخترق المحلل ، و ان لم يكن يعرف اتجاه الفوتون قبلا فان هذه التجربة لن تسمح له بتحديد اتجاه الفوتون الأصلي ،
بالنسبة لهذه التجربة يدعى كل الاستقطابين السيني و العيني بالحالات الذاتية للتجربة - أي الحالات الوحيدة التي يمكن للتجربة ايجادها بدقة- و تدعى - خروج الفوتون من المحلل أو بقائه فيه قيما ذاتية لهذه التجربة -
في هذه التجربة كما نلاحظ على الرغم من أنه يمكن للفوتون أن يأتي من ما لانهاية من الاتجاهات الا أننا لا يمكن أن نميز من خلال تجربتنا سوى نتيجتين؟؟
و هذا راجع عموما لكون الجسيمات الكمية أجهزة دقيقة أي لا يمكن ايجاد أجهزة تجريبية أكثر دقة من الجسيمات الكمية ، وهذا ما تعبر عنه علاقات عدم التحديد بشكل جيد .
لنعود للأثر الاحتمالي الذي ينتج عند دراسة الأنظمة الكمية ، و في تجربتنا هذه الفوتون الأتي من اتجاه يصنع زاوية a مع الاتجاه السني
من الواضح أن الفوتون كلما كان اتجاهه قريبا من الاتجاه السيني كلما كان احتمال اختراقه المحلل كبيرا و كلما كان قريبا من الاتجاه العيني كلما كان احتمال توقفه كبيرا ، يمكن بسهولة من هذا الاعتبار حساب احتمال مرور الفوتون لنجده مسايا ل cos²a و احتمال توقفه لنجده مساويا ل sin²a
هذا الفوتون يجب أن يمر أو لا يمر و هذا ما يعبر عنه بالاحتمال الكلي مساو للوحدة
cos²a+sin²a=1
و اثبات أن كل الفوتونات التي مرت استقطبت في الاتجاه السيني رغم أن اتجاهها الأصلي لم يكن سينيا بحتا نضع محللا أخر مماثل للأول مباشرة بعده ، يمكن أن نلاحظ أن كل الفوتونات التي مرت من المحلل الأول تمر من المحلل الثاني ، و هو ما يدل على استقطابها بالاتجاه السيني عند مرورها بالمحلل الأول
أي ان اجهزة القياس الكلاسيكية لا يمكنها أن تجاري دقة الأنظمة الكمية ما يجعلنا نتحدث بالصورة الاحتمالية
و الله أعلم
تمت بعون الله و حفظه و الحمد لله رب العالمين

(ما توصلت إليه في بحثي أن نسبة الجسيمات التي يعبر من المرشحين الثالث و الثاني من بين تلك الجسيمات التي عبرت المرشح الاول (بدون التطرق لميكانيكا الكم و لا لظروف التجربة الذاتية )لن تزيد بحال عن الأحوال عن الربع)

فهل هناك طريقة أخي الكريم الصادق للوصول باستخدام قوانين الكم إلى أن تلك النسبة هي بالفعل الربع أو على اقل تقدير أنها لن تزيد عن الربع




بارك الله فيك أخي الكريم الصادق و يسر لك جميع أمرك

الصادق 19-04-2010 02:36

رد: spin observable
 
اقتباس:

و قد فسرت الأمر كالتالي

إن اتجاه المرشحات المذكور عمودي على الاتجاه لفيض الجسيمات
لنفترض أن اتجاه حركة فيض الجسيمات في اتجاه محور x
و لكن اتجاه استقطاب الجسيمات غير معلوم
أما المرشحات فكل منها يمثل بالمستوى Y-Z
فإذا كان المرشح الأول يعمل مرور الجسيمات المستقطبة في اتجاه Y
بينما المرشح الثاني يعمل على مرور الجسيمات المستقطبة في اتجاه Z
و الثالث في اتجاه Y=Z

و توقعت أن مرور الجسيمات على المرشح الاول سيعتمد في نسبته على الاتجاه الذي كانت الجسيمات في حالتها الأولية مستقطبة في اتجاهه
(فهل هناك طريقة نحسب تلك النسبة هنا و التي توقعت ان تعتمد على مربع دالة جيب التمام بين اتجاه Y بين اتجاه استقطاب الجسيم )
و لكن تلك النسبة من الجسيمات التي تعبر أيضا بمجرد عبورها ذلك المرشح تصبح مستقطبة في اتجاه Y

لذا توقعت أن نسبة ما يعبر المرشح الثاني ستكون صفرا نتيجة للتعامد بين اتجاهي الاستقطاب


و لكن إن مرت الجسيمات على المرشح الثالث قبل المرشح الثاني فإن هناك نسبة ستعبر لأن هذه الجسيمات ستكون مستقطبة في اتجاه Y=X
و بالتالي لن يكون اتجاه استقطابها عموديا على المرشح الثاني
و في هذه الحالة ستعبر نسبة من تلك الجسيمات المرشح الثاني

ومن هنا إن صح ذلك يكون ترتيب المرشحات ذا أهمية كبيرة
هذا صحيح تماماً. لان المرشح العمودي على اتجاه الحركة يمرر كل الجسيمات و المرشح المواز لاتجاه الحركة لا يمرر الجسيمات و بصورة عامة فان كمية الجسيمات الساقطة عمودياً على وحدة المساحة فى وحدة الزمن تسمى بالشدة intensity وكلاسيكياً هناك قانون يُعرف بـ Malus' law يقول بان الشدة المارة من مرشح (مستقطب) يصنع العمودي عليه زاوية ثيتا مع اتجاه الشدة الساقطة تُعطى بـ
http://latex.codecogs.com/gif.latex?I%27=I\cos^2\theta

حيث ان الشدة وفقاً للمبادئ الكلاسيكية فى نظرية ماكسويل تتناسب مع مربع شدة المجال الكهربي
اما فى ميكانيكا الكم فان الامور تصبح اكثر تعقيداً و ذلك لان اذا كانت لدينا شدة عالية فان كل ما سبق ينطبق بحزافيره اما اذا كانت الشدة ضعيفاً (افترض انه تم اطلاق فوتون واحد كل ثانية بزاوية 45) فان القانون السابق سوف يعطي شدة تساوي نصف الشدة الساقطة وعليه فان هذا يعني مرور نصف فوتون كل ثانية!!!!!!!!!! و هذا هو بيت القصيد... و الذي يعطي الفرق الاساسي بين الفيزياء الكلاسيكية و ميكانيكا الكم. لانه من المستحيل ان يكون لدينا نصف فوتون فاما فوتون كاملاً (1) او لا فوتون بالمرة (0). و هكذا فان التجربة لها نتيجتين فقط (قيمتيين ذاتيتيين) وهما مرور الفوتون او عدم مرور الفوتون و عليه فان للفوتون حالتين ذاتيتين اي ان هناك تكمم لنتائج القياس
اذن فان الخلاصة هي اننا لا نستطيع تحديد ما اذا كان الفوتون يمر عبر المرشح ام لا.... ولكن نستطيع فقط ان نتحدث عن احتمال مرور الفوتون و عليه فان القانون السابق ليس قانوناً للشدة الكلاسيكية وانما هو قانون لاحتمال المرور عبر المرشح. و مربع شدة المجال الكهربي التى تتناسب كلاسيكياً مع شدة الاستضاءة سوف تقابل في ميكانيكا الكم مربع دالة ما تُعرف بالدالة الموجية
اذن فان الاختلاف بين الاثنين هو اختلاف فى المفهموم و ليس فى القانون الرياضي (Malus' law)

مثلاً حسب المثال المقترح اعلاه (فى مشاركتك السابقة) فان قانون الشدة
http://latex.codecogs.com/gif.latex?I%27=I\cos^2\theta
يفترض ان 'I دالة مستمرة فى ثيتا
اما فى حالة الكمية فلدينا حالتين فقط و هما
1-اتجاه الفوتون فى اتجاه المحور x
http://latex.codecogs.com/gif.latex?...p=\mathbf{e}_x

2-اتجاه الفوتون فى اتجاه المحور y
http://latex.codecogs.com/gif.latex?...p=\mathbf{e}_y

وهكذا اذا كان http://latex.codecogs.com/gif.latex?...p=\mathbf{e}_x فان الفوتون لامحال with certainty سوف يمر عبر المرشح اما اذا كان اتجاه الفوتون http://latex.codecogs.com/gif.latex?...p=\mathbf{e}_y فانه من المؤكد لن يمر عبر المرشح ( وهذا يعكس حقيقة ان القياسات على الحالات الذاتية تعطي قيم مضبوطة with certainty)

و اخيراً اذا كان اتجاه حركة الفوتون الفوتون عشوائياً فان دالة الحالة هي التركيب الخطي للدوال الحالة الذاتية اي ان
http://latex.codecogs.com/gif.latex?...+b\mathbf{e}_y
حيث ان الثوابت a و b هي ثوابت تطبيع normalization الدالة
http://latex.codecogs.com/gif.latex?...y.\mathbf{e}_y
ونسبة لتعامد الدوال الحالة الذاتية فى فضاء هليبرت (هنا ايضاً تعامد محور x مع محور y فى الفضاء الحقيقي) فان ثوابت التطبيع تحقق
http://latex.codecogs.com/gif.latex?\large%20a^2+b^2=1
و هكذا نستطيع كتابة دالة الحالة بالصورة التالية
http://latex.codecogs.com/gif.latex?...a \mathbf{e}_y

مما يعني ان احتمال مرور الفوتون عبر المرشح يساوي مربع جيب تمام الزاوية بينما ان احتمال عدم المرور يساوي مربع جيب الزاوية

الان ناتي لحالة الثلاثة مرشحات و لنضعها بالترتيب http://latex.codecogs.com/gif.latex?F_1,F_2,F_3
فان الف الجسيم الساقط فى اتجاه x سوف تكون دالة حالته هي الدالة الذاتية http://latex.codecogs.com/gif.latex?...p=\mathbf{e}_x ونسبة لانها دالة ذاتية للمرشح الاول (دالة المرور المؤكد لان المرشح يمثل مؤثر اسقاط موازي لمتجه الحالة الذاتية) فان احتمال المرور يساوي 1 و عندما يعبر الجسيم المرشح الاول فان دالته الموجية هي دالة ذاتية للمرشح الثاني (دالة عدم المرور المؤكد المرشح يمثل اسقاط فى الاتجاه المتعامد ) وبالتالي فان الجسيم لن يمر...
اما اذا اخذنا الترتيب http://latex.codecogs.com/gif.latex?F_1,F_3,F_2 فان الجسيم بعدما يمر من المرشح الاول سوف يكون فى حالة دالة غير ذاتية بالنسبة للمرشح F_3
http://latex.codecogs.com/gif.latex?...20\mathbf{e}_y

و هكذا فان هناك احتمال لمرور الجسيم عبره يعطي من مؤثر الاسقاط فى اتجاه المرشح F_3
اي ان الاحتمال يساوي مربع جيب تمام الزاوية
و يتكرر نفس هذا السناريو (اذا مر الجسيم) على المرشح F_2 مما يعني ان الاحتمال الكلي هو جيب تمام الزاوية مرفوعاً للاس الرابع اي يساوي ربعاً

و الله اعلم

تغريـد 20-04-2010 19:21

رد: spin observable
 
لك خالص الشكر أخي الكريم الصادق على التوضيح
لي سؤالين يحيراني كثيرا
ما المقصود بالاستقطاب
هل هو اتجاه سير الإلكترونات
فإذا كان كذلك
فماذا نقصد بالقول" إذا كان لدينا فيض من الالكترونات تتحرك باتجاه محور x "
فهل هذا يعني أنها مستقطبة في اتجاه x

أم أن هذا يعني أن الاتجاه الغالب لاستقطاب الجسيمات هو محور x.


:

و السؤال الثاني

فهمت أن المرشح يعمل على استقطاب الالكترونات فهل هذه الطريقة الوحيدة لذلك

آسفة لجهلي الشديد
و لكني لا أملك إلا أن أسال الله العلي الكريم أن ييسر لك أمرك إلى الدرجات العلى من الجنة
كما يسر لنا بك أمرنا .


الساعة الآن 06:05

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd. TranZ By Almuhajir