لوصف الأمر بشكل أكثر دقة :
لنفترض جسيما كموميا وحيدا : من وجهة نظر كلاسيكية يلزمنا تحديد موضع و سرعة الجسيم أما النظرية الكمومية بالصياغة الموجية لشرودنغر قتعتبر ألا وجود لمثل هذا الخواص المقيسة مثل : الموضع , العزم , الطاقة فكل موضع متاح للجسيم هو موقع محتمل و كل قيمة متاحة للطاقة هي قيمة ممكنة أيضا , و الاختلافات بين قيمة و أخرى هي اختلافات في الاحتمالات .
حيث يكون لهذه الدالة في كل موقع(س) قيمة معينة () تدعى سعة وجود الجسيم في الموضع (س) , فيكون احتمال وجود الجسيم في الموقع (س) هو ببساطة مربع سعة وجود الجسيم في الموقع (س) . اما عن حالات اندفاع الجسيم فسنضطر هنا الى اجراء تحليل توافقي لدالة الموجة و مجموعة توافقيات هذه الموجة يمثل الحالات الممكنة لاندفاعات الجسيم و بهذا نحصل على دالة موجية للاندفاع ضمن فضاء افتراضي للاندفاعات تكون غالبا بشكل أمواج اما شديد التراص مما يدل على حالة شديدة الاندفاع أو قليل التراص و هذا يمثل حالات قليلة الاندفاع .
دالة الموجة في الأسفل تعلوها مراحل التحليل التوافقي حتى الوصول الى مركبات الموجة الأساسية
تقوم معادلة شرودنغر بوصف تطور دالة الموجة مع الزمن و بهذا تقوم بالتنبؤ الدقيق للحالات الكمومية للجسيم في أي لحظة و بهذا تقدم لنا قانونا ثابتا يشرح تطور الدالات الموجية بكل دقة , هذه الدالات التي تكود في داخلها جميع قيم الموضع و الاندفاع المحتملة . فدالة الموجة التابعة للجسيم حر الحركة تتنبأ بان مركز الحزمة الموجية سيتحرك مع الزمن بسرعة ثابتة و بنفس الوقت سيزداد امتداد الموجة ليصبح الموضع أكثر فأكثر غير محدد .
توجد أيضا بعض الجمل الكمومية المستقرة التي لا تبدي تغيرا مع الزمن كحالة الالكترون في ذرة الهيدروجين و الذي يصور في ميكانيك الكم كموجة احتمالية مستقرة دائرية : يكون تواجد الالكترون أعظميا ضمن بعد معين من النواة في حين يقل الاحتمال تدريجيا كلما ابتعدنا عن النواة . تطرح معادلة شرودنغر اذن تطورا حتميا للدالة الموجية (يدعى هذا التطور بالتطورU ) فهي تحدد بدقة قيم الدالة في جميع نقاط الفضاء في أي لحظة زمنية , لكن الطبيعة الاحتمالية لميكانيك الكم ينشأ من التدخل بعملية القياس لتحديد احدى الخواص المقيسة للجسيم عندئذ يحصل التطور R اللااحتمالي تأخذ بموجبه الخاصة المقيسة أيا من القيم المتاحة لها حسب قيمة احتمالها و هذا ما يكافئ ما دعوناه مسبقا ب
( انهيار الدالة الموجية ) .