العمل في مجال الصوت
قيــــــــــاس الصـــــــــــــــوت
يستخدم العلماء وحدة تسمى الديسيبل لقياس مستوى شدة الصوت. والنبرة ذات التردد 3,000 هرتز وذات مستوى الشدة صفر ديسيبل، هي فاصل عتبة السمع، أي أضعف صوت تستطيع الأذن البشرية الطبيعية أن تسمعه. ومستوى شدة الصوت الذي قيمته 140 ديسيبلا هو مؤشر عتبة الألم. ولا تحدث الأصوات ذات 140 ديسيبلا، أو أكثر، إحساسًا بالسمع في الأذن، وإنما تحدث إحساسًا بالألم. ويبلغ الهمس نحو 20 ديسيبلا، والمحادثة العادية نحو 60 ديسيبلا.
وهنالك وحدة، تسمى الفون، كثيرًا ما تستخدم لقياس مستوى ارتفاع النبرات. ويساوي مستوى الارتفاع بوحدة الفون لأي نبرة مستوى الشدة بالديسيبل لنبرة ذات تردد 1,000 هرتز تبدو في مثل ارتفاعها. فارتفاع النبرة التي شدتها 20 ديسيبلا وترددها 1,000 هرتز، على سبيل المثال، هو 20 فونًا. وأي نبرة أخرى تبدو بنفس الارتفاع، بغض النظر عن ترددها وشدتها، ستعطي مستوى الارتفاع 20 فونًا. فالنبرة التي شدتها 80 ديسيبلا وترددها 20 هرتزًا مثلاً سيكون مستوى ارتفاعها 20 فونًا إذا بدت في مثل ارتفاع النبرة التي شدتها 20 ديسيبلا وترددها 1,000 هرتز.
التحكم في الصــــــــــــوت
يُعنى علم الصوتيات بالصوت وتأثيراته على الناس. وعلم الصوتيات البيئي أحد فروع علم الصوتيات الذي يهتم بالتحكم في التلوث الضجيجي.
ونتعرض باستمرار لسماع الضجيج من عديد من المصادر، مثل الطائرات ومواقع البناء والصناعات والسيارات والأجهزة المنزلية. والأفراد الذين يتعرضون للضجيج المرتفع لفترات طويلة قد يعانون من فقدان السمع المؤقت أو الدائم. كما أن الأصوات المرتفعة قصيرة المدى، مثل صوت طلقة البندقية أو فرقعة الألعاب النارية، يمكن أن تضر بالأذن. والضجيج المتواصل، حتى ولو لم يكن صاخبًا، يمكن أن يسبب الإرهاق والصداع وفقدان السمع والتوتر والغثيان.
ويمكن التحكم في تلوث الضجيج بعدة طرق. فقد طور مهندسو الصوتيات طرقًا لتقليل الضجيج الصادر عن كثير من الأجهزة. فكاتمات الصوت، على سبيل المثال، تجعل محركات السيارات أهدأ. وفي المباني يمكن استخدام الجدران السميكة الثقيلة، والأبواب والنوافذ محكمة الإغلاق، وطرق مختلفة أخرى، لمنع تسرب الضجيج إلى الداخل. أما عمال المصانع والأفراد الآخرون الذين يتعرضون لضجيج مكثف، فيجب أن يضعوا على آذانهم نوعًا من أجهزة حماية الأذن لمنع فقدان السمع.
ويُعنى علم الصوتيات كذلك بتهيئة ظروف جيدة لإنتاج الحديث والموسيقى وسماعهما في قاعات الاجتماعات وصالات الموسيقى وماشابهها. فعلى سبيل المثال، يسعى مهندسو الصوتيات للتحكم في ارتداد الصدى، وهو انعكاسات الصوت، إلى الخلف وإلى الأمام، من السقف والجدران والأرضية والسطوح الأخرى في القاعة أو الصالة. وبعض ارتداد الصدى ضروري لإنتاج أصوات سارة، ولكن كثرة ارتداد الصدى الزائد يمكن أن يشوش الحديث أو الموسيقى. ويستخدم المهندسون الأشياء الماصّة للصوت، مثل البلاط الخاص بالصوتيات والسجاد والستائر والأثاث الداخلي المبطن، من أجل التحكم في ارتداد الصدى.
استخـــــــــــدام الصـــــــــــــوت
للصوت استخدامات كثيرة في العلم وفي الصناعة. فكثيرًا ما يستخدم الجيوفيزيائيون الصوت في التنقيب عن المعادن والنفط. ومن ذلك أنَّهم يجرون تفجيرًا صغيرًا على سطح الأرض، أو تحت سطحها بقليل، فترتدّ موجات الصوت الناتجة من طبقات الصخور تحت الأرض. وتدلُّ طبيعة الصدى والفترة الزمنية التي تستغرقها الموجات لبلوغ السطح على نوع وسمك الطبقة الصخرية الموجودة. وبهذه الكيفية يستطيع الجيوفيزيائيون تحديد موقع التشكيلات الصخرية التي يحتمل أن تكون غنية بالمعادن أو النفط. وهنالك جهاز، اسمه السونار يستخدم موجات الصوت للكشف عن الأجسام الموجودة تحت الماء.وتستطيع السفن الحربية تحديد موقع غواصات العدو باستخدام السونار، كما تستخدمه قوارب صيد الأسماك للكشف عن تجمعات الأسماك.
يسمى الصوت الذي يكون تردده أعلى من مدى السمع البشري الموجات فوق الصوتية، ويستخدم لتنظيف الساعات والأجهزة الدقيقة الأخرى، ولاختبار المعادن واللدائن ومواد أخرى في المصانع، ولتشخيص أورام الدماغ وأمراض الكبد والكشف عن الحصوات في الحويصلة الصفراوية والكلى وأمراض أخرى. كما أن الموجات فوق الصوتية تهيئ وسيلة مأمونة نسبيًا للوقوف على نمو الجنين في بطن أمه.
وقد طوّر العلماء والمهندسون عدة أجهزة لتسجيل وإعادة إنتاج الصوت. وتشمل هذه الأجهزة الميكروفون والسماعة (مكبر الصوت) والمضخِّم. ويحول الميكروفون موجات الصوت إلى إشارات كهربائية تقابل نمط هذه الموجات. وتحول السماعة الإشارات الكهربائية، مثل تلك التي ينتجها الميكروفون، مرة أخرى إلى صوت. أما المضخِّم، فيستخدم في معظم نظم إعادة إنتاج الصوت لتقوية الإشارات الكهربائية وتمكينها من تشغيل السماعة. كل نظم الخطاب العام والمذياع والفونوغراف والمسجل الصوتي والتلفاز بها على الأقل مضخم واحد.
وعند تسجيل الموسيقى، يقوم المهندسون أحيانًا بإعداد تسجيلين أو أكثر من ميكروفونات موضوعة في عدة أماكن حول المصدر. فإذا شُغِّلت هذه التسجيلات معًا بطريقة صحيحة، لإعادة إنتاج الصوت، فإنها تعطي صوتًا مجسَّمًا. وللصوت المجسم خصائص العمق والاتجاه التي للأصل. ولإعادة إصدار الصوت المجسم، عند الاستماع، يلزم أن يكون للجهاز مضخم وسمّاعة لكل تسجيل على حدة.
دراســــــــــــــــة الصـــــــــــــــوت
الأفكــــــــــار المبكـــــــــــرة
بدأت دراسة الصوت في العصور القديمة. فقد أجرى فيثاغورث، الفيلسوف وعالم الرياضيات الإغريقي، تجارب على الأصوات التي تحدثها الخيوط المهتزة منذ القرن السادس قبل الميلاد. ويقال إن فيثاغورث هو الذي اخترع الصونومتر، وهو مقياس الصوت الذي يستخدم لدراسة الأصوات الموسيقية. وفي نحو عام 400 قبل الميلاد، ذكر عالم إغريقي اسمه أرشيتاس أن الصوت ينتج عن حركة جسم يصطدم بآخر. وبعد نحو 50 عامًا، ذَكر الفيلسوف الإغريقي أرسطو أن الصوت يُحمل إلى آذاننا بوساطة حركة الهواء. ومنذ ذلك الحين، وحتى نحو 1300م، لم تجر في أوروبا أبحاث علمية تذكر. غير أن العلماء في العالم العربي والإسلامي والهند، طوّروا بعض الأفكار الجديدة عن الصوت بدراسة الموسيقى واستحداث نظم في نظرية الموسيقى.
الصـــــــــــوت عند العــــــــــــرب
قدم إخوان الصفا في القرن الرابع الهجري، العاشر الميلادي، موجزًا شاملاً في علم الأصوات وعلم الموسيقى، وعرفوا الصوت بأنه "قرع يحدث في الهواء من تصادم الأجرام... وأنه يتموج إلى جميع الجهات". كما قسموا الأصوات إلى أربعة أنواع: جهيرة وخفيفة وحادة وغليظة وعزوا ذلك إلى طبيعة الأجسام وقوة تموج الأصوات. وقد أبان ابن سينا في رسالة له بعنوان أسباب حدوث الحروف بأن الصوت ينتج عن تموج الهواء دفعة وبقوة وسرعة. ولم تقف إسهامات العلماء العرب عند تعريف الأصوات بل تعدت ذلك إلى أن طبقوا مبادئ علم الفيزياء في الأصوات على الموسيقى وذلك نحو عام 425هـ، 1033م.
النظــــــــريــــــــــة المــــــــــوجيـــــــــــة
تعني النظرية الموجية "أن الصوت ينتقل على شكل موجات" وقد سبق العلماء العرب والمسلمون غيرهم في الإشارة إلى هذا المفهوم، غير أن العلماء الأوروبيين لم يشرعوا في تجارب موسعة عن طبيعة الصوت إلا في أوائل القرن السابع عشر الميلادي. ففي تلك الفترة تقريبًا، وضَّح الفلكي والفيزيائي الإيطالي جاليليو بالتجربة أن تردد موجات الصوت هو الذي يحدد طبقته. لقد قام بحك قاطعة ذات أسنان على سطح لوح من النحاس فأحدث صوتًا حادًا، ثم ربط بين مسافة الأخاديد التي تركتها الأسنان على اللوحة وطبقة الصوت الحاد الذي نتج عنها.
وفي نحو عام 1640م، تمكن مارن ميرسين، وهو عالم رياضيات فرنسي، من إجراء أول قياس لسرعة الصوت في الهواء. وبعد نحو عشرين عامًا، أثبت الكيميائي والفيزيائي الأيرلندي روبرت بويل تجريبيًا أن موجات الصوت لابد أن تنتقل في وسط. وقد برهن بويل على أنه لا يمكن سماع صوت جرس داخل جرة أفرغ منها الهواء بقدر الإمكان. وفي أواخر القرن السابع عشر الميلادي، صاغ العالم الإنجليزي إسحاق نيوتن علاقة تكاد تكون صحيحة بين سرعة الصوت في وسط وبين كثافة الوسط وقابليته للانضغاط.
وفي منتصف القرن الثامن عشر الميلادي، أوضح دانيال برنولي، وهو رياضي وفيزيائي سويسري، أن الخيوط يمكن أن تهتز عند أكثر من تردد في نفس الوقت. وفي أوائل القرن التاسع عشر، طوّر رياضي فرنسي اسمه جان بابتيست فورير طريقة رياضية، يمكن أن تستخدم لتحليل موجات الصوت المعقدة إلى النبرات البسيطة التي تتكون منها. وفي الستينيات من القرن التاسع عشر الميلادي درس هيرمان فون هيلمولتز، وهو فيزيائي ألماني، تداخل موجات الصوت، وإنتاج الضربات وعلاقة كل منهما بإحساس الأذن بالصوت.
التطـــــــــورات الحديثــــــــــــة
تأسس جزء كبير من علم الصَّوتيات الحديث على مبادئ الصوت الموجودة في كتاب نظرية الصوت الذي ألفه الفيزيائي البريطاني البارون رايلي في عام 1878م. ورغم أن الكثير من خصائص الصوت معروفة منذ ذلك الوقت الطويل، إلا أن علم الصَّوتيات استمر يتوسع في مناطق جديدة. وفي الأربعينيات من القرن العشرين، وضح جورج فون بيكيسي، وهو فيزيائي أمريكي، كيف تميِّز الأذن بين الأصوات. وفي الستينيات من القرن العشرين توسع علم الصَّوتيات سريعًا استجابة للاهتمام المتزايد بتأثيرات التلوث الضجيجي الفيزيائية والنفسية الضارة.
وشملت بحوث علم الصَّوتيات في سبعينيات القرن العشرين، دراسة الاستخدامات الجديدة للموجات فوق الصوتية وتطوير معدات فوق سمعية أفضل. وخلال أوائل الثمانينيات، شمل البحث أجهزة أفضل لإعادة إنتاج الصوت وتطوير الحواسيب التي تستطيع أن تفهمه وتعيد إنتاجه. كما درس مهندسو علم الصَّوتيات الاستخدامات الممكنة للموجات تحت الصوتية، أي الصوت الذي يكون تردده أقل من مدى السماع البشري.