ملتقى الفيزيائيين العرب - عرض مشاركة واحدة - أسس الفيزياء النووية
عرض مشاركة واحدة
  #3  
قديم 24-02-2006, 12:50
الصورة الرمزية فيزيائي%
فيزيائي%
غير متواجد
مشرف سابق
 
تاريخ التسجيل: Dec 2005
الدولة: السعودية
المشاركات: 1,291
افتراضي مشاركة: أسس الفيزياء النووية

ولكن كيف هو شكل النواة ؟
بسبب صغر حجم النواة، فإننا لا نستطيع تحديد شكلها بالضبط ، فالذي نستطيع تحديده من النواة هو طاقتها وكتلتها ، كما أن تصميم نموذج للذرة أسهل بكثير من تصميم نموذج للنواة ، فكلنا نعلم الطاقة الكهرمغناطيسية التي تربط بين النواة والإلكترونات ، فالموجب يرتبط بالسالب ، ولكننا لانعلم سوى القليل عن الطاقة التي تربط بين جسيمات النواة ، كم أن قطر الذرة أكبر بكثير من قطر النواة ، لذلك من الصعب تحديد شكل النواة الخارجي ، وهناك من العلماء من قال بما أن الطاقة التي تربط بين جسيمات النواة أقوى بكثير من أي قوة مؤثرة خارجية ، فإننا من الأفضل أن نقترح أن النواة تميل إلى كونها كروية الشكل ، فأنتجت النظريات بعض النماذج عن النواة ، فكما ناقشنا نماذج الذرة سنناقش الآن نماذج النواة ، فكر العلماء في أن من الممكن أن تكون علاقة طاقة الترابط النووي مع النيوكلونات مشابهة لعلاقة الطاقة الكهرمغناطيسية بالإلكترونات ، ففكروا بنموذج يسمى بالنموذج القشري ، ويقول هذا النموذج ، أن النواة تتكون من قشريات أي مستويات ، وكل مستوى يدور فيه عدد معين من النيوكلونات ، وعندما يمتلئ مستوى فإن المستوى الثاني يبدأ بالإمتلاء ،وعندما طرحت ماريا ماير فكرة الأعداد السحرية ، ازداد الدعم لنموذج القشريات ،ولكن ما هي الأعداد السحرية ؟ ،إكتشفت الدكتورة ماير أن الأنوية التي يكون عدد نيوتروناتها أو عدد بروتوناتها أو كليهما ، أحد الأرقام التالية(2،8،20،28،50،82،126) فإنها تكون مستقرة نووياً ، فتمت إضافة بعض الفروض إلى النموذج القشري ، منها أن هذه الأعداد السحرية هي أرقام الإمتلاء في المستويات ، وكما أن الذرات التي عدد إلكتروناتها (2،10،18،36،54،86) تكون مستقرة كيميائياً ، كذلك النواة ، كما أن هذا النموذج يقول بأن هذه القشريات صلبة ومن الصعب الإنتقال بالطاقة من مستوى إلى آخر ، كما أن التي يكون في مستواها الأخير نيترون وحيد فإنها تميل إلى فقد أكثر من ميلها عندما يكون هذا النيوترون في قشرة متكاملة ، وقد حقق هذا النموذج نجاحات كبير واستطاع أن يتنبأ بالكثير من الخصائص ، ولكنه أغفل نقطة مهمة وهي الشحنة الكهربائية ، مما جعل آخرين ينتجون نموذجاً آخر ألا وهو نموذج قطرة السائل ، حيث أن النواة في هذا النموذج مثل قطرة السائل ، فالكثافة موزعة بالتساوي وكذلك الشحنة ، وتصبح هذه الكثافة صفر عند السطح ،وتتموج هذه القطرة (النواة) مع التأثيرات الخارجية ، كما أن غلاف النواة متماسك أكثر من اللب ، وذلك لأن النيكلون في داخل النواة يكون مرتبط مع البقية النيوكلونات من جميع الجهات ، أما النيوكلون الموجود على السطح فإنه يكون مرتبطاً مع النواة من جهة واحدة فقط وهي جهة مركز النواة أما الجهة الأخرى فتكون عبارة عن فراغ ، وهذا يشبه إلى حد ما التوتر السطحي عند السوائل ، ولكن هذا النموذج مع سهولته ودقة نتائجه ، أخطأ في كثير من الأشياء وخاصة عن الإستقرار النووي ، وهذا النموذج مرتبط بشكل كبير مع طاقة الترابط النووية التي سنأخذها بالتفصيل إن شاء الله في المحاضرة القادمة وقبل أن أختم المحاضرة أريد أن أضيف أنه في منتصف الخمسينات طرح العالم الفيزيائي أيج بوهر وعدد من زملائه ، نموذجه الموحد عن النواة ، وهذا النموذج دمج فيه النموذج القشري مع قطرة السائل ، بحيث تكون القشريات متموجة وليست صلبة ، كما أنه قال في هذا النموذج أن النواة ليست كروية دائماً ، فهي كروية في حالة الإستقرار النووي التام، ومشوهة في حالة عدم الإستقرار ، كما أنها ثابتة في حالة الإستقرار ومهتزة في حالة عدم الإستقرار ، فلاقى هذا النموذج أكبر الموافقة خاصة في التجارب المعملية ..
ومن الطريف أن من طرح النموذج الموحد للنواة وهو أيج بوهر ، هو ابن نيلز بوهر الذي طرح النموذج الموحد للذرة ، فهذا الشبل من ذاك الإسد ..


(النشاط الإشعاعي)

نظراً لكبر موضوع النشاط الإشعاعي ، فإني قد قسمته إلى ثلاث محاضرات :
1- قوة الترابط النووي
2- الإشعاعات النووية
3- الكواشف الإشعاعية

مقدمة
بعد أن تم اكتشاف أن النواة تتكون من جسيمات صغيرة ، وهي النيوترونات والبروتونات ، لاحظ العلماء أن النواة تمسك هذه الجسيمات بإحكام شديدة مع أن النظريات -وقتها- كانت تصرح بصعوبة ذلك، فسيطر على عقولهم التساؤل عن سر هذه القوة الهائلة للنواة في حفظ محتوياتها ، وأيقنوا بالفعل أن باباً جديداً من القوى قد فتح للزائرين ..


ولكن ، ما هذه القوة ؟
دعنا الآن نحللها سوياً، ولنبدأ بأبسط القوى ، وهي القوة التي تجمع الكواكب في المجموعة الشمسية ، يمكننا أن نستخدم في تفسيرها بكل سهولة بقانون نيوتن في الجاذبية القائل :
(قوة الجاذبية بين جسمين تتناسب طردياً مع حاصل ضرب كتلتي الجسمين وعكسياً مع تربيع المسافة بينهما)
وهكذا استطعنا أن نفسرها تفسير مقنع للغاية ، ولكن يبرز التحدي عندما نتحدث عن قوة أصعب قليلاً ، وهي القوة التي تثبت الإلكترون في مداره حول النواة ، فعندما نستعمل قانون الجاذبية ، تكون محصلة القوة ضعيفة للغاية لا تستطيع أن تحفظ الإلكترون في مساره ، وعندما استعمل العلماء قانون كولوم في أن الأجسام ذات الشحنات الكهربائية المتماثلة تتنافر والمختلفة تتجاذب ، كان مقنعاً بقوة جديدة أسموها الكهرمغناطيسية ، ولكن ماذا عن طاقة النواة في حفظ مكوناتها ؟ ، دعنا نبدأ بالجاذبية ونرى هل هي مفسرة لهذه القوة أم لا ، فإذا وضعنا كتلة النيوكلونات في معادلة الجاذبية تفاجئنا بالمحصلة الضئيلة التي تدل على أن الجاذبية لا تفسر بالطبع هذه القوة ، وإذا أخذنا القوة الكولومية كمفسر لقوة الترابط ، لوجدنا أنها ليست صالحة أبداً لهذه المهمة ، لأننا إذا أخذنا مثلاً ذرة الهيليوم المكون من نيوترونان عديمي الشحنة وبروتونان موجبي الشحنة ، نجد أن القوة الكولومية لو كانت هي المتحكمة في النواة فسوف تمزق أجزائها ، لأن البروتونان يجب أن يتنافرا حسب هذه القوة ، مما دل على أن هناك قوة جديدة أكبر من قوة التنافر الكولومية بكثير ، مما زاد العلماء حيرة على حيرتهم في غموض هذه القوة ، التي أسموها فيما بعد بالقوة النووية الشديدة ..


ما هي خصائص هذه القوة ؟
لهذه القوة الجديدة خصائص غريبة ومختلفة عن باقي القوى ، فهي قوة تجاذبية ولكن ليس كالجاذبية الثقالية ، فمداها تقريباً 2 فيرمي ، وبعدها تختفي هذه القوة ، وعندما يقترب الجسم تزيد القوة النووية لجذبه ، ولكن إذا وصلت المسافة بين النيوكلونين لأقل من 0.5 فيرمي فإن القوى الجذب تتحول إلى تنافر فجأة ، وذلك لتجنب الاندماج ، كما أن هذه القوة لا علاقة لها أبداً بالقوة الكهربائية(الكولومية) حيث أن التجاذب بين النيوترونان يساوي التجاذب بين البروتونان يساوي التجاذب بين النيوترون والبروتون ، كما أن لهذه القوة ميزة خاصة تسمى التشبع ، أي أن النيوكلون يتبادل هذه القوى مع النيوكلونات المجاورة فقط وليس له علاقة بالنيوكلونات البعيدة ..


هل القوة النووية متساوية في كل الأنوية ؟
من المفاجئ أن القوة النووية غير متساوية في كل الأنوية ، مع أن جميع الأنوية تحتوي على نفس البروتونات والنيوترونات إلا أن هناك مؤثرات تؤثر على القوة النووية في أنوية العناصر ، فمعدل القوة النووية (0.0Mev) عند الهيدروجين ذو النيوكلون الواحد و (2.5Mev)عند نواة الهيليوم ذو البروتونين والنيترون ، ويقفز المعدل إلى (7Mev) عند الهيليوم ذو البروتونين والنيوترونين ، ثم يستمر المعدل في الارتفاع تدريجيا كلما تقدمنا في ترتيب العناصر حتى يصل إلى عنصر الحديد (8.8Mev) ثم يعود بالانخفاض تدريجيا إلى (7.3Mev) في آخر الجدول الدوري، وهكذا يكون معدل معظم العناصر ما بين(7Mev) و (8.8Mev) ، لذلك نواة الحديد هي أقوى الأنوية من ناحية طاقة الارتباط ، قال تعالى {وأنزلنا الحديد فيه بأس شديد} ..


ما هي المؤثرات التي تؤثر على القوة النووية ؟
كما علمنا أن القوة النووية (طاقة الارتباط) ليس متساوية في جميع العناصر ، وذلك بسبب مؤثرات منها ما يزيد في طاقة الارتباط النووي (موجب) ومنها ماينقص منه (سالب) ، وقد أبدع نموذج قطرة السائل في وصف وتحليل طاقة الارتباط ، فعن طريق هذا النموذج تم اكتشاف أهم المؤثرات على طاقة الارتباط ، وهذه لمحة سريعة لأهم هذه المؤثرات :

مؤثر الحجم :وهذا مؤثر موجب حيث أنه كلما زاد عدد النيوكلونات ، زادت القوة النووية ، وهذا المؤثر يكون فعال حتى نصل إلى ذرة الحديد ، وبعدها تغلب عليه المؤثرات الأخرى .

مؤثر التوتر السطحي :

عندما يكون النيوكلون في سطح النواة فإنه يتبادل القوى مع جهة واحدة فقط ، لذلك تقل الطاقة الرابطة بسبب هذا الموقع ، وكلما زادت مساحة السطح كلما قلت الطاقة الرابطة بسبب هذا المؤثر السالب ..

مؤثر كولوم :
لأن البروتونات لها شحنات موجبة ، فإن قوة كولوم التي تقول أن الأجسام المتشابهة الشحنة يجب أن تتنافر ، يكون لها دور بالتأكيد في تحديد طاقة النواة ، كما أن القوة الكهربائية ليست من صفاتها التشبع مثل القوة النووية ، لذلك أي بروتون في النواة يتنافر مع جميع بروتونات الذرة ، ويمكن صياغة هذا المؤثر السلبي على أنه كلما زاد عدد البروتونات قلت طاقة الارتباط ..

مؤثر التماثل :
أثبتت التجارب أن النواة تميل إلى كون عدد النيوترونات يساوي عدد البروتونات ، لذلك يقول هذا المؤثر السالب أنه كلما زاد الفرق بين عدد النيوترونات وعدد البروتونات ، تقل الطاقة الرابطة ، وهذا المؤثر يكون غالباً في الأنوية الخفيفة (40>z) ، أما الأنوية الثقيلة فالنيوترونات فيها هي الأكثرية ..

مؤثر التزاوج :
وهو مؤثر يتفق مع المشاهدات العلمية ، وهو أن الأنوية التي عدد بروتوناتها وعدد نيوتروناتها زوجيين تكون أكثر استقراراً ، ويليها الأنوية التي عدد نيوتروناتها فردي وعدد نيوتروناتها زوجي أو العكس ، ثم في الأخير الأنوية التي عدد بروتوناتها وعدد نيوتروناتها فرديين ، وهي خمسة عناصر فقط في الطبيعة ..

مؤثر القشرة :وهذا المؤثر أظهره نموذج القشرة ، وهو يقول أنه كلما كان عدد النيوترونات أو البروتونات مقارباً من أحد الأعداد السحرية () فإن الطاقة الرابطة تزيد ..


ما هو عيب الكتلة ؟ وما علاقته بالطاقة الرابطة ؟
إذا قيل لك أوجد كتلة نواة الهيليوم ذو النيوترونين والبروتونين على الطريقة الحسابية، فإنك ستقول :
2× كتلة البروتون + 2 × كتلة النيوترون = كتلة نواة الهيليوم
أي: 2 + 2 × 1.008665 = 4.03187
ولكن التجربة تثبت بدقة أن كتلة نواة الهيليوم تساوي 4.00150 ، أي أن الفرق يساوي 0.03037 ، وهذا الفرق أكبر من أن يكون خطأ تجريبي ، فأين ذهب هذا الفائض في الكتلة ؟ ، علماً أن هذا الحال ليس في الهيليوم فقط بل هو منتشر في بقية العناصر ، فوزن النيوكلونات وهي مفردة أكبر من وزن النيوكلونات وهي تشكل نواة والفرق بين الكتلتين يسمى (عيب الكتلة)، وهذه النقطة حيرت العلماء كثيراً، حتى أنهم بدءوا يشكون في صحة قانون حفظ الكتلة ، إلى أن جاء أينشتاين بمعادلته المعروفة التي أثبت بها أن الكتلة في النواة من الممكن أن تقل في حالة واحدة ، وهي أنها تحولت إلى طاقة ، مما أكد للعلماء أن هذه الكتلة تحولت إلى طاقة مكافئة ، وسخرت هذه الطاقة العظيمة لحفظ النواة وتثبيت مكوناتها ..


هل هناك علاقة بين طاقة الترابط والاستقرار النووي ؟
تكون مستقرة إذا كانت طاقة الترابط فعالة

نقاط مهمة :
1 فيرمي = 10^-15 مليمتر
1Mev= 1.602 × 10^-13 جول
قوة كولوم = القوة الكهربائية = القوة الكهرو مغناطيسية
القوة النووية = قوة الترابط = الطاقة الرابطة
رد مع اقتباس