المشاركة الأصلية كتبت بواسطة هوائية
طرق العد
سأحاول أن أتناول هنا شرح بعض طرق العد البسيطة و التي قد نحتاجها في بعض دراستنا أو في الحياة
أول هذه المبادئ
نظرية:
إذا تكونت عملية ما من خطوتين ،الأولى يمكن إجراؤها بعدد m من الطرق و الثانية بعدد n من الطرق، فإن العملية بأكملها قد تتم بعدد mn طريقة.
و ذلك لأن كل طريقة في الخطوة الأولى يقابلها عدد n من الطرق في الخطوة الثانية و عليه فإن العدد الكلي للطرق المختلفة هو n +n + n + …+ n)) m مرة و التي تساوي m n .
و هذه يعتبر من أبسط القواعد و غالبا ما نطبقها بدون الانتباه لذلك فمثلا عندما نرمي قطعة نقد مرتين نقول أن هناك 4 إمكانات مختلفة لظهور الصورة و الكتابة في المرتين،
و كذلك الأمر لو أردنا اختيار رقمين من الأرقام العشرة بدون قيود (على أن يكون ترتيب الاختيار مهم) فإن هناك 10x 10 =100 طريقة لظهور العدد الأول و الثاني مرتين.
حسنا ماذا لو أردنا اختيار رقمين مختلفين سيكون لدينا 10x9=90 طريقة .
إذ لمعرفة عدد الطرق لاختيار رقمين مختلفين (على أن يكون الترتيب مهم) سيكون عندنا خطوتين الأولى اختيار العدد الأول و أمامنا عشرة اختيارات {0،1،2،3،4،5،6،7،8،9}
الآن لاختيار العدد الثاني أمامي 9 خيارات لأني بالتأكيد سأختار أي من الأرقام العشرة فيما عدا العدد الذي اخترته في الخطوة الأولى.
و علي فإن العملية ستتم في 9 10x طريقة و ذلك لأن كل عدد مختار في الخطوة الأولى سيكون هناك تسع خيارات متاحة له في الخطوة الثانية و عليه يصبح مجموع الإمكانات الكلي 90 إمكانية
و هذه النتائج يعبر عنها على شكل أزواج مرتبة
فمثلا في التجارب السابقة الإمكانات يمكن كتابتها
1- { (ص،ص)، (ص،ك)، (ك،ص)، (ك،ك) }.
2- { (0،0)، (0، 1)،(2،0)،(0، 3)،...،(0، 9)
(0،1)، (1،1)، (2،1)، (3،1)،...،(1، 9)
.
.
.
(9، 0)،(9، 1)،(9، 2)، (9، 3)،....(9،9) }
3- { (0، 1) ،(0، 2) ، (0، 3)،...(0، 9)
(1، 0) ، (1، 2)،(1، 3)، ...،(1، 9)
(2، 0) ، (2، 1)،(2،3)، ...،(2، 9)
.
.
.
(9، 1)،(9، 2)،(9، 3)،...،(8،9)}
نلاحظ أن الامكانات في 3 جزء من الامكانات في 2 و تختلف عنها بحذف العناصر (0،0)، (1،1)، (2،2)، (3،3)...(9،9)
لأن كل منها تعني أن العددين المختارين متشابهين
حسنا ماذا لو رمينا قطعتي نقد مختلفتين هل سيختلف عدد الإمكانات عما حسبناه من إلقاء قطعة نقد واحدة مرتين
بالطبع لا ، سيظل عدد الإمكانات بالطبع أربعة
هذه النقطة مهمة جدا لأننا في هذه الحالة أمامنا عملية تتكون من خطوة واحدة و لكني جزأت تلك الخطوة لأجزاء سهلت علي عملية الحساب ، و هذا ما يحدث في الواقع، فالعمليات في غالبية المسائل ليست على خطوات و لكني أتخيل أن العملية تتم على مراحل و هنا يجب توخي الحذر بأن العملية الناشئة و العملية الأساسية لها بالفعل نفس عدد الامكانات.
لفهم ذلك تخيل
لو أن كانت قطعتي النقد في المثال السابق كانت متشابهة و رميت مرة واحدة هل سيختلف الجواب؟
ما رأيك؟
......................
إذن القاعدة في منتهى السهولة
و لكن مهلا
يجب أن ننتبه أن هذه القاعدة حينما تستخدم فإنها تعطينا النواتج مرتبة فمثلا عند اختيار رقمين فإن الامكانية 3،7 تختلف عن 7،3
و في القاء قطعة النقد مرتين ظهور صورة مرة واحدة يقابله إمكانيتين و ليس واحدة، ما هما؟
إذن لا تنفع هذه الطريقة لحساب عدد طرق اختيار طالبين من عشرين طالب لتمثيل المدرسة في مسابقة ما،
كيف يمكن فعل ذلك؟ سنرى هذا فيما بعد و لكن بعد أن نفهم قاعدتنا الأولى فهما جيدا
ستقول القاعدة صارت واضحة الآن
لنر ذلك
بكم طريقة يمكنك اختيار الجامعة و التخصص لطالب أنهى الثانوية العامة ، أمامه أربع جامعات و في كل منها 5 تخصصات متاحة؟.............................
بكم طريقة يمكنك أن تدرس 4 ساعات على الأكثر في يومين؟ هل يمكن تطبيق القاعدة و لماذا؟
حسنا
إذا فهمنا القاعدة جيدا يمكن ببساطة أن نعممها
إذا كانت العملية تتم بعدد من الخطوات K و كانت الخطوة الأولى يمكن إجراؤها بعدد m1 طريقة و الثانية بعدد m2 طريقة و هكذا و الأخيرة بعدد mk طريقة فإن العملية بأكملها يمكن إجراؤها بعدد
m1 x m2 x …mk
طريقة مختلفة
بمعنى أن الطالب إذا كان بإمكانه في المثال السابق بعد إكماله الجامعة أن يكمل دراساته العليا و متاح أمامه 3 تخصصات بكم طريقة تتم العملية كلها؟
تعليق
كما أوضحت سابقا هذه القاعدة بسيطة جدا و نحن نطبقها غالبا بصورة بديهيية و لكن وضعها في صورة نظرية يسهل علينا تأطير العلم و تفسير كل شيء له علاقة بطرق العد من نقطة الانطلاق تلك
و من ناحية أخرى هناك أسئلة كثيرة ليست سوى تطبيق سهل للنظرية و لكن يغيب ذلك عن بالنا
فما رأيكم بهذا السؤال الآن
بكم طريقة يمكن الاجابة بطريق عشوائية على اختبار يتكون من عشرين سؤال (صح و خطأ)؟
و بكم طريقة يمكن الاجابة عليها كلها بطريقة صحيحة؟
|
عفوا هذا الموضوع بعد إجراء التعديلات