ملتقى الفيزيائيين العرب - عرض مشاركة واحدة - الإشعاع النووى
الموضوع: الإشعاع النووى
عرض مشاركة واحدة
  #4  
قديم 24-06-2009, 12:48
الصورة الرمزية ستار12
ستار12
غير متواجد
مشرف منتدى الفيزياء المسلية ومنتدى الكهربية والمغناطيسية
 
تاريخ التسجيل: Sep 2005
الدولة: السعودية
المشاركات: 1,144
افتراضي رد: الإشعاع النووى

التعرض المسموح به:

أ‌- في كندا:

• العاملون الذين يعملون بصفة عامة في مجال أشعة الراديو والتي منها أشعة الميكروويف 5 MW/ CM² over 0 – 1 Hour (6 min)

• الأشخاص العاديون 1 MW/CM² 0 – 1 Hour (6 min)

ب‌- في أمريكا:

1.6 MW/CM² for 2450 MHz

السلامة وأشعة الليزر
LASER SAFETY BASICS
اشتق اسم أشعة الليزر من الأحرف الأولي لـ

Light Amplification by Simulated Emissions of Radiation

وعرفت أشعة الليزر لأول مرة سنة 1960 بواسطة العالم الدكتور/ شارلس ميامان وتطورت بعد ذلك وصارت تستخدم في عديد من الأنشطة : الصناعة ، الاتصالات ، الأبحاث ، الطب ، النواحي العسكرية.

وتعتبر الليزر مصدر شديد اللمعان للضوء حيث أن 1 MW من أشعة الليزر المرئية يعادل حوالي مليون مرة اللمعان الصادر من لمبة قوتها 100 وات.

تعتبر سلامة العين Eye Safety هو الاهتمام الأول بالنسبة لأي شخص يعمل في مجال أشعة الليزر أو بالقرب منها. حيث من الممكن أن تتسبب أشعة الليزر في إحداث أذي كبير بالعين.

تقسيم أشعة الليزر Classification of Lasers

يتم تقسيم أشعة الليزر حسب الضرر الذي تحدثه وذلك علي النحو التالي:

الدرجة (1) Class I

• تكون في المجال المرئي Visible Region

• لا تعتبر خطرة

• يتم إعفاء مستخدمي الدرجة (1) من أشعة الليزر من إتخاذ أية احتياطات للتحكم فيها.

الدرجة (2) Class II

• ليزر مرئي ينبعث بمستوى أقوي من الدرجة الأولي

• القوة الناتجة عنه أقل من 1 MW

• لا تسبب أذي للعين إذا كان زمن التعرض لا يزيد عن 0.25 ثانية

• لا تسبب حرق للجلد.


الدرجة (3) (أ) Class III (A)

• من الممكن أن تكون ذات أذي مزمن للرؤية.

• مستوي القوة أقل من 5 MW

• من الممكن أن تكون مرئية أو غير مرئية.

الدرجة (3) (ب) Class III

• ذات أذي فوري للجلد والعين من الأشعة المباشرة

• مرئية أو غير مرئية

• مستوي القوة أقل من 500 MW

• الأشعة المنعكسة من الممكن أن تكون مؤذية في حالة التشغيل بالقوة الكاملة والرؤية قريبة من مصدر الانعكاس.

الدرجة (4) Class IV

• ذات أذى فوري للجسم والعين من الأشعة المباشرة ومن الممكن أن تحدث أذي كبير للعين في زمن أقل من زمن استجابة العين للضوء المبهر 0.25 seconds

• مستوي القوة يفوق الدرجة (3)

• تشكل خطر الحريق.

الوقاية من مخاطر أشعة الليزر

أ- التحكم الهندسي Engineering Controls

• التحكم من بعد Remote Control

• حواجز الحماية Protective Housing

• عزل مسار الأشعة Enclosed Laser beam paths

الخطوات أعلاه توفر الحماية الكافية للعاملين من خطر أشعة الليزر فيما عدا حالات الصيانة أو الحاجة لتعديل المسار أو الضبط حيث لا تتوفر الحماية للعاملين أثنائها.
ب- سلامة العين Eye Safety

• من الممكن أن يؤدي التعرض لأشعة الليزر إلي فقد البصر لذلك يجب تجنب النظر مباشرة إلي مصدر أشعة الليزر أو إنعكاساته ، حيث أن أشعة الليزر المنعكسة قد تصل قوتها إلي نفس قوة الإشعاع المنبعث لذلك يجب عدم وجود أية أسطح عاكسة أو مواد عاكسة في المنطقة الموجد بها أشعة الليزر.

• يتم استخدام نظارات سلامة بها عدسات فلتر/مادة ماصة لتقليل مستوي الضوء بحيث تقوم العدسات بفلترة أو امتصاص طول موجة معين وتسمح بدخول أطوال الموجة للضوء العادي بحيث تقوم بتقليل قوة شعاع الليزر. وتسمي قدرة العدسة علي الامتصاص بالكثافة الضوئية .

ج‌- المخاطر الأخرى (غير المتعلقة بشعاع الليزر)

• من الممكن حدوث انفجار نتيجة لتراكم الضغوط العالية للغازات في لمبة الضوء (Flash lamp) عند تشغيلها.

• يتم في بعض الأحيان استخدام غازات (النيتروجين السائل ، هليوم السائل) لتبريد الكريستال (Ruby) وممكن أن يحدث احتراق للجلد في حالة الاحتكاك بهذه الغازات.

• في حالة تسرب هذه الغازات إلي داخل الغرفة المغلقة سوف يحل محل الأوكسجين ويقلل نسبته ووجود مكان قليل الأوكسجين (Oxygen Deficiency Area).

• يتم في كثير من الأحيان استخدام أشعة الليزر في قطع البلاستيك أو المعادن أو المنتجات الخشبية وعند تسخين هذه المواد بواسطة إشعاع الليزر من الممكن تولد أبخرة سامة في المنطقة.

• من الممكن حدوث صعقة كهربائية في حالة الاتصال بالأجزاء المكشوفة من المولدات ، ومن الممكن أن يحدث ذلك أثناء أعمال الصيانة أو التركيب والضبط.

• من الممكن حدوث حريق في حالة استخدام درجة (4) Class IV من أنظمة الليزر ، لذلك يجب تشجيع استخدام المواد المؤخرة للحريق Flame – Retardant Materials.

• يتم استخدام مؤشرات الليزر من النوع Class II ( أقل من 1 MW)

• يجب إجراء كشف طبي ابتدائي للعين Baseline eye exam لجميع العاملين الذين تستدعي طبيعة عملهم في مجال أشعة الليزر.

• يجب استخدام أشعة الليزر في مكان جيد الإضاءة لتقليل حجم إنسان العين وبالتالي تقليل فرص الإصابة للعين.

• يجب عدم استخدام المجوهرات أثناء العمل في منطقة الليزر حيث من الممكن أن تتسبب في انعكاس هذه الأشعة وبالتالي تسبب أذي للعين.

• يجب تثبيت العلامات التحذيرية المناسبة في المنطقة التي بها أشعة الليزر

• استخدام الأغطية المناسبة Protective Housing لمسار الأشعة الليزر للحماية من خطر التعرض لأشعة الليزر وتكون هذه الأغطية من النوع الذي يوقف شعاع الليزر في حالة فتح الغطاء.

العلامات التحذيرية يجب تثبيتها علي أغطية الحماية لمسار أشعة الليزر

قانون التفكك الإشعاعي Radioactiue decag law

تعتبر ظاهر التفكك الإشعاعي ظاهرة إحصائية ، أي أنه لا يمكن التكهن بزمن
تنحل عند نواة بعينها ، ولكن عند وجود عدد كبير جداً من أنوية النظير المشع ، فإنه بمتابعة معدل تغير كمية الأشعة المنبعثة يمكن معرفة الكثير عن نوعية التحول .

هناك احتمال محدد للتفكك في وحدة الزمن لأي نظير مشع ، وهذا الاحتمال يعرف بثابت مميز لكل نظير مشع بغض النظر عن حالته . الكيميائية أو الفيزيائية ( من سائله أو صلبه أو غازية )



فإذا كان N عدد الأنوية المشعة الموجودة في عينة ما عند زمن ( T ) فإن معدل التفكك يعطي المعادلة

حين تسمى λ بثابت التفكك ( decay Constant ) وهو يعد مقياساً لاحتمال تفكك نواة معينة .



وبمكاملة المعادلة السابقة في الفترة الزمنية من t = o إلى t = t فإن عدد الأنوية N التي تبقى بعد مضي زمن t يمكن حسابه بدلالة عدد الأنوية N__o عند البدء أي عند t = o ويعطي التكامل

ومنها

N = No e- λt



وتعرف هذه المعادلة بقانون التفكك الإشعاعي وهي تعطي العلاقة بين عدد الأنوية المتبقية N والزمن t .

أنواع التفكك الإشعاعي :-
تفكك الفا:-

في هذه العملية تفقد النواة المشعة ( حيث X رمز النظير ) جسيم الفا المكون من بروتونين ونيوترونين وهو عبارة عن نواة ذرة الهيلوم . وهذا يعني نقصان العدد الكتلي بمقدار أربع وحدات والعدد الذري بوحدتين وبذلك تكون النواة الناتجة مختلفة تماماً عن النواة الأم .

تفكك بيتا B-Decay

تصدر نوبات بعض النظائر جسيمات تعرف بجسيمات بيتا ( B-Particles) وهذه الجسيمات عبارة عن إلكترون أو بوزيترونات والبوزيترون ( Positron) عبارة عن جسم كتلة مساوية لكتلة الإلكترون ولكن شحنته موجبة . ويحدث هذا النوع من التفكك للأنوية ( المعروف باسم تفكك بتيا ) في كثير من النظائر سواء كانت ثقيلة أم خفيفة

أنواع تفكك بيتا :- Types of B-decay

أ ) التفكك الإلكتروني Eelectron decay



يلاحظ أن إصدار إلكترون من النواة ناتج عن تحول نيوترون من نيوترونات النواة إلى بروتون وذلك لكي تصبح النسبة بين النيوترونات والبروتونات هي نسبة الاستقرار ويعبر عن هذا التفكك كالآتي :-

ب ) التفكك البوزيتروني Positron decay



في بعض الأحيان تكون نسبة النيوترونات إلى البروتونات في النظير المعين أقل من النسبة التي تحقق الاستقرار . وفي هذه الحالة يتحول أحد بروتونات النواة إلى نيوترون وينطلق نتيجة لذلك بوزيترون يحمل شحنة البروتون الموجبة ويعرف تفكك بيتا في هذه الحالة بالتفكك البوزيتروني ويعبر عنه كالآتي :

جـ ) الاسر الالكتروني : Electron Capture



يمكن أن يحدث تحول أحد بروتونات النواة إلى نيوترون بطريقة أخرى يتم ذلك بأن تأسر النواة إلكترون من إلكترونات المدارية القريبة من النواة ( أي المدار k وفي أحيان قليلة من المدار ) ويتحد هذا الإلكترون المأسور مع أحد البروتونات فيتكون النيوتون . ويعرف تفكك بيتا في هذه الحالة بالأسر الإلكتروني ويعبر عن الآتي :-

وهكذا فإنه يوجد ثلاثة أنواع لتفكك بيتا هي التفكك الإلكتروني ( - B- ) والبوزيتروني ( +B ) والاسر الإلكتروني ( Electron Copture ) . وفي حالة الأسر الإلكتروني لا تصدر النواة أياً من جسيمات بيتا ولقد ثبت فيما بعد أنه عند حدوث أي نوع من تفكك بيتا ينطلق من النواة جسيمات تعرف باسم النيوترينو ( neatrino) - V ( نيو ) .

والنيوترينو عبارة عن جسم متعادلة الشحنة وكتلة السكون له مساوية للصفر
( أي Mv = o ) . وعلى هذا أصبح التعبير عن الأنواع الثلاثة لتفكك بيتا كالآتي :-

اضمحلال جاما :-

إشعاعات جاما هي عبارة عن موجات كهرومغناطسية ذات طاقة عالية . وتصدر إشعاعات جاما إذا تكونت النواة الوليدة الناتجة عن تفكك الفا أو تفكك بيتا في حالة مثارة فتفقد النواة إثارتها عن طريق التخلص من الطاقة في شكل إشعاعات جاما وبذلك فإنه بالنسبة لاضمحلال جاما تكون النواة الوليدة هي نفسها النواة الأم ولكنها أكثر استقراراً .

وتجدر الإشارة إلى أن بعض النظائر المشعة تتفكك إلى نظائر غير مستقرة يكون النظير الناتج مشعاً بدوره وبالتالي يتفكك إلى نظير آخر .

وهكذا نجد أن هناك العديد من النظائر التي لها نشاط إشعاعي طبيعي وتتفكك هذه النظائر مصدره إما جسيمات الفا أو بيتا أو كليهما معاً وقد يتبع ذلك مباشرة أو خلال فترة زمنية معينة إشعاعات جاما الصادرة نتيجة انتقال النويات الوليدة من الحالات المثارة إلى الحالات الأرضية .

نظرية الانحلال الإشعاعي :-

تقدم رذر فورد وسودي سنة 1905 بنظرية الانحلال لتفسير ظاهرة النشاط الإشعاعي الطبيعي . وتقضي النظرية بأن ذرات العناصر المشعة تنحل نتيجة لما ينبعث منها من جسيمات الفا أو بيتا التي هي في حد ذاتها جسيمات مادية ، أي أن جزءاً محدد من نواة الذرة ينطلق بسرعة فائقة تارك وراءه ذرات عنصر جديد يختلف تماماً في خواصه الطبيعية والكيميائية عن العنصر الأصلي . ويكون العنصر الجديد أو المولود مشعاً أيضاً فتنطلق من نوى ذراته جسيمات مادية ينتج عن انطلاقها أن تتحول ذرات هذا العنصر الجديد إلى ذرات عنصر ثالث جديد وهكذا نتابع عملية التحول من عنصر مشع إلى عنصر آخر مشع حتى ينتهي الانحلال عند عنصر مستقر وجدير بالذكر أنه فيما عدا حالات نادرة جداً فإن نوى عنصر معين تنحل بانبعاث نوع واحد من الجسيمات ، أما جسيمات الفا أو جسيمات ( بيتا ) فلا تنبعث الجسيمات من نواة واحدة ، ومعنى هذا أن النواة التي يحدث انحلالها بجسيمات الفا لا ينبعث منها جسيمات بيتا ، ألا أن انبعاث جسيمات الفا أو جسيمات بيتا قد يكون مصحوباً بانبعاث أشعة جاما .

وتسمى العناصر الناتجة من عملية التحول المتتابع بالمتسلسلة الإشعاعية ويتوقف الوزن الذري للعنصر الوليد بعد أي تحول على نوع الأشعة المنطلقة في عملية التحول فعندما ينطلق جسيم الفا ( وزنه a ) من ذرة الراديوم ( وزنها الذري 226 ) تتكون ذرة عنصر جديد وزنه الذري 222 ، ويعرف هذا العنصر الجديد بالرادون وهو ذو نشاط إشعاعي وتنطلق منه جسيمات الفا تتحول ذرته إلى عنصر آخر هو الراديوم ( وزنه الذري218 ).

متسلسلات النشاط الإشعاعي الطبيعي :-

إن جميع العناصر ذات النشاط الإشعاعي الطبيعي تقع إعدادها الذرية بين Z = 81 وZ = 92 وهناك ثلاث مسلسلات في الطبيعة ، وتعتبر معظم النويدات المشعة في الطبيعة نواتج انحلاليه لها . وكل متسلسله تبدأ بنويدة أم تمر بسلسلة من التحويلات التي تشمل انبعاث جسيمات الفا وبيتا لتكوين نويدات وليدة . وشكل رقم (1) يتضمن اسماء المتسلسلات الثلاثة والأعمار النصفية للنويدات الأم والنويدات الوليدة النهائية المستقرة لكل متسلسلة .

متسلسلة اليورانيوم :

تبدأ هذه المتسلسلة بعنصر اليورانيوم Ui ويبلغ نصف العمر لليورانيوم4.5X109 yer . ويمر اليورانيوم بسلسلة من التحولات التي يصاحبها انبعاث جسيمات الفا أو بيتا حتى ينتهي بالرصاص المستقر وفيما يلي جدول لعناصر هذه المجموعة :

ب ) متسلسلة الأكتيوم :-

هذه المتسلسلة يرجع أصلها إلى الأكتيويورانيوم وهو النظير لليورانيوم



والذي يبلغ نصف العمر 7.1X108 yer ويمر الأكتيويورانيوم بسلسلة من التحولات حتى ينتهي بنظير الرصاص المستقر ويمكن التعبير عن الوزن الذري لعناصر هذه المجموعة بالرمز 4ن + 3 حيث تترواح قيمة ن بين 51 ، 58 .

جـ ) متسلسلة الثوريوم :-

تبدأ بعنصر الثوريوم يمر بسلسلة من التحولات ثم يتحول بعد إشعاع ست من جسيمات الفا وأربعة من جسيمات بيتا إلى نظير الرصاص المستقر
ويمكن التعبير عن الوزن الذري لعناصر هذه المجموعة بالرمز 4ن وتتراوح قيمة ن في هذه المجموعة بين 52، 58 .

د) مجموعة النبتونيوم :-

كان من الطبيعي أن يتجه التفكير إلى احتمال وجود متسلسلة رابعة من العناصر الطبيعية المشعة يعبر عن 1.8 أوزانها الذرية بالرمز (4ن+1) ولم يكن معروفاً من عناصر هذه المجموعة سوى سبعاً موجود بكميات ضئيلة جداً في الغلاف الصخري ( القشرة الأرضية ) وكذلك الناتج النهائي البزموث ( وزنه الذري 209) .



وفي أثناء الحرب العالمية الثانية استخدم العلماء النشاط الإشعاعي الصناعي لإنتاج نظائر مختلفة لكل العناصر وامكنهم بذلك تحضير عناصر المجموعة الرابعة التي لم تكن موجودة في الطبيعة . ويعتبر البلوتونيوم العنصر الوالد لهذه المجموعة ولذلك فهي تعرف بمجموعة البلوتونيوم أو المجموعة 4ن+1 حيث تتراوح قيمة ن بين 52،60 .

وهي تبدأ بـ التي لها عمر نصفي مقداره لليورانيوم2 .25X106ger وهذه المتسلسلة تنهي بعد انحلالها بنظير البزموث .





التفكك الإشعاعي المتزن

تكون المادة الناتجة عن عمليات التفكك الإشعاعي في بعض الحالات هي نفسها مادة مشعة فتفكك بصورة تلقائية حال تكونها ومن أشهر الأمثلة على ذلك اليورانيوم 234 حيث ينطلق من نواته جسيم ألفا ويتحول لثوريوم 230 والذي بطلق بدورة جسيماً
آخراً ويتحول لراديوم 226 وهكذا . وإذا وجدت عينة نقية من اليورانيوم فإن هذه العينة وبعد مضي زمن معين محتوي على مزيج من هذه العناصر أو النويدات نفرض أن المادة الأصلية ( تعرف بالنواة الأم )1x وفترة نصف العمر لها Τ1 وثابت تفككها l2 قد تفككت ونتج عنها مادة جديدة x2 ( تعرف بالنواة البنت ) وفترة نصف عمرها Τ2 وثابت تفككها l1 ونفرض أن عدد ذرت المادة الأصلية ( أي عندما (t = 0 ) يساوي N0 بينما يساوي عدد ذرات المادة الجديدة الصفر عند نفس الزمن ( t = 0 ) ويمكن كتابة عدد ذرات المادة الأصلية الأم كدالة في الزمن على الصورة N1( t ) = N0 e وبعد مضي فترة زمنية مقدارها d t فإن عدداً مقداره N1l1dt بتفكك من المادة 1x ويتحول للمادة الجديدة x2 والتي ينقص عددها في نفس الفترة الزمنية وبسبب التفكك بمقدار N 1 l1dt وبالتالي فإن عدد الذرات المتبقية من x2 يكون N2 حيث

dN2 = N1 l1dt - N2 l2dt



ويكون معدل تراكم أو إنتاج هذه المادة هو



= N1 l1- N2 l2


وتكون فترة نصف العمر للنواة الأم في بعض الحالات طويلة جداً مقارنة مع فترة نصف العمر للنواة البنت أي T2 << T1 ( وهذا يعني أن معدل تفكك النواة الأم صغير جداً مقارنة مع معدل تفكك النواة البنت ، وفي هذه الحالة وعند اعتبار الفترات الزمنية التي تكون متقاربة مع T2 وهي بالتالي قصيرة جداً مقارنة مع فترة نصف الحياة للنواة الام فإنه يمكن اعتبرا أن عدد ذرات الأم ثابت وكذلك عدد الذرات التي تتفكك في الثانية الواحدة . وبما أن معدل تفكك النواة البنت كبير جداً فإن هذه الذرة تتفكك بنفس معدل تكونها ويبقى عدد ذراتها بالتالي ثابتاً ويكون معدل تراكمها معدوماً أي أن

وفي حالة وجود عدة عمليات تفكك فإنه يمكن تعميم النتيجة السابقة لتصبح



N1 l1 = N2 l2 = N3 l3 = …..

ويكون نشاط جميع العناصر الموجودة متساوياً ويقال أن التفكك في هذه الحالة متزناً ( أي في حالة اتزان) .


الشدة الإشعاعية للعينة

asample

في معظم الأحيان يكون المطلوب هو معرفة عدد النويات التي تتفكك في الثانية وليس عدد النويات الباقية دون تفكك والمحدد بالعلاقة

N ( t ) = No e - λt

ويعرف عدد النويات التي تتفكك في الثانية الواحدة من عينة مشعة باسم الشدة الإشعاعية للعينة activity of asample))



أي أن الشدة الإشعاعية للعينة هي : -



A ( t ) = =λNO e-λt = λ N ( t )



وتعرف AO = λNo بالشدة الإشعاعية عند اللحظة t = o لذا نجد أن A ( t ) = Ao e-λt

عمر النصف ومتوسط العمر Half -Life and Mean- Life

عمر النصف ( أو العمر النصفي ) للنظير المعين هو عبارة عن الفترة الزمنية التي تنخفض خلالها شدته الإشعاعية إلى النصف بمعنى آخر فإن عمر النصف هو الزمن اللازم لتفكك نصف عدد نوى العينة ، ويرمز له عموماً بالرمز t لهذا فإنه يوضع

حيث أن وحدة الزمن هي الثانية ( sec ) فإن وحدة قياس ثابت التفكك λ هي

أما متوسط العمر لعينة مشعة والذي يرمز له عادة بالرمز فهو عبارة عن مجموع أعمار الأنوية جميعاً في العينة مقسوماً على عددها ويسهل تحديده من العلاقة

وهكذا نجد أن كلاً من λ ، t مرتبطة ببعضها بعلاقات بسيطة ،

ومعرفة حداها يحدد باقيها .

طاقة الارتباط واستقرار النوى

يتجلى تماسك النواة لنا بفارق دقيق هو أن النواة أقل وزنا من مركباتها. يتضح من قياسات كتل البروتونات والنترونات المكونة للنواة أنها أكبر من مجموعها دوما من كتلة نواة الذرة التي تشكلها، مهما كانت هذه الذرة وهذا الفارق هو ما يسمى عادة نقص الكتلة. وتقول النظرية النسبية إن هذا النقص في الكتلة يتحول إلى طاقة وفقا للعلاقة الشهيرة الطاقة = الكتلة * مربع سرعة الضوء، وهذا النقص يقابل ما يدعي طاقة ارتباط النواة، أي طاقة ارتباط مكونات النواة، وهي أيضاً الطاقة اللازم بذلها لتفكئك هذه النواة إلى مكوناتها

تنتج الطاقة النووية إذن من انشطار النوى الثقيلة أو من اندماج النوى الخفيفة، فهاتان عمليتان تؤديان إلى نقص الكتلة، ومن ثم إلى إنتاج الطاقة الحركية (لحرارية).

طاقة الاندماج

ويتركز حديثنا عن الاندماج المنتج للطاقة، إلا أن الحصول على طاقه الاندماج يتطلب منا إسهاما أوليا يستثمر في التغلب على قوى التدافع الكهربائي بين البروتونات، وهي القوى التي تمانع حد، وث الاندماج بمعاكستها الشديدة لفعل تقارب النوى كي تتفاعل. إن وأس المال اللازم لهذا الاستثمار في مجال إنتاج الطاقة يختلف باختلاف تفاعل الانلاماج المعتمد، وعلى وجه الدقة إنه يتناسب حسب قانون كولون مع جداء (حاصل ضرب) شحنتي النواتين المندمجتين.

ويمكن القول عموما إن مقدار الاستثمار كبير جدا (مليارات الدولارات)، رلكن نسبة الربح وسطيا أكبر بأربعة آلاف مرة، وهي تستحق البذل حقا، ولكنه بذل لم تقدم عليه ألا الدول المتطورة القوية الغنيه الواعية، ويمكن أن تقدم عليه الدول النامية المتضافرة لتوفير أسباب النجاح.

فمن وجهة نظر البذل اللازم تقديمه يعد اندماج نراتي الهيدروجين الثقيل للحصول على الهيليوم، الاندماج الأكثر أهمية للبحث المختبرى، لأنه يقدم أكبر كسب في الطاقة في مقابل أقل بذل (أو كما يقال أقل رأس مال للاستثمار). وهذه الطاقة تمتص رويدا رويدا في أوساط مناسبة متوزعة بين ذرات الوسط مولدة ما سميناه الحرارة التي كما نعلم يمكن أن تولد البخار والبخار بدوره يمكن أن يدير العنفات مولدا الطاقة الكهربائية.

والسؤال الآن كيف يمكن استدار هذا المورد الثري؟

هياج حراري للتصادم

وقبل استغلال النواتج لتفريغ طاقتها والحصول على الحرارة أو الكهرباء يلزم تحريض تفاعل الاندماج بحد ذاته، والتغلب على عوق قوي التجاذب الكهربي له، وذلك كما قلنا بتقدي الاستثمار الأولى الذي لابد منه والذي يكفي لتحقيق هذا التفاعل في مزيج نظيري الهيدروجين: الدوتيريوم والنريتيوم. من الواضح أنه ربما يتم لنا ذلك ببساطة عند تقديم الاستثمار المطلوب على شكل حرارة، إذ أن الحرارة تولد في المزيج حركة عشوائية (هياجا حراريا) وقد يصادف عندئذ تتصادم نواتان جبهيا فتبلغ إحداهما الأخرى بطريق مباشر مخترقة الفراغ الكبير في الذرة ومتهحدية التدافع الكهربائي بين النواتين، وتتلخص المسألة في مجملها بمجرد التسخين إلى الدرجة الكافية لتحقيق تلامس (أو تصادم) النوى. ويتطلب تحقيق ذلك كثيرا من الطاقة الحرارية التي تتوزع عشوائيا بين مزيج الذرات أو الجزيئات؟ أما الحصول على الطاقة الحركيه (الاندفاعية) اللازمة لبدء تحقيق اندماج الدوتيريوم والتريتيوم، فتقتضي رفع درجة الحرارة إلى 40 مليون درجة. وهنا قد يتاح لبعض الذرات اقتراب بضعها من بعض حتى يضعه فرميات، وهذا الاقتراب إن حدث يجعل القوى النووية تفعل فعلها محدثة الاندماج المطلوب. ويرى المختصون أن زيادة مردود الاندماج ترفع درجة الحرارة إلى مائه مليون درجة.

الذرات تتحول إلى بلازما

والسؤال هنا كيف يمكن بلوغ هذه الدرجة من الحرارة وكيف يكون حال المادة في مثل هذه الدرجات العالية؟ طبعا لن تكون صلبة ولا سائلة ولا غازا عاديا، بل ستكون بالحالة التي تسمى بلازما، والبلازما حالة تكون فيها نوى الذرات في أعلى درجات التأين اي عارية من إلكتروناتها. وهذه في الواقع هي الحالة العادية للمادة في درجات الحرارة التي تفوق عشرة آلاف درجة، وهذه درجة لا نراها على الأرض إلا في الصاعقة أو القوس الكهربائية أو في الانفراغ الكهربائي؟ وإن كانت هي. اكثر الحالات أنتشارا في الكون من حولنا، إذ ليست الشمس والنجوم إلا كرات هائلة من البلازما الساخنة.

تبقى البلازما في النجوم متماسكة رغم قوى التنافر بين مركباتها بفعل القوى التناقلية الكبيرة التي تحصرها وتشدها اليها مثلما تمسك الأرض بالغلاف الجوي حولها، ولكن أنى لنا هذا على سطح الأرض؟ وكيف وأين وفي أي وعاء يمكن احتواء هذه البلازما وجعلها ملتمة بعضها إلى بعض؟. فكل قدرأو وعاء نضعها فيه في درجة الحرارة اللازمة للاندماج (أكثر من 40- 100 مليون درجة) لكل مادة أو آنية نعرفها تنصهر بل وتتبخر متحولة إلى غازبل إلى بلازما، هنا بيت القصيد أو هذا هو جوهر معضلة الاندماج المطروحة حاليا على العلم والتكنولوجيا. وفي الحقيقة لا يكفي أن نولد البلازما المحصورة فقط، وهذا بحد ذاته ليس أمرا يسيرا، بل يجب إتاحة الوقت الكافي للتفاعل كي يحدث ومن ثم للطاقة كي تنتج. فالوصفة الكاملة للاندماج المسيطر عليه تتلخص في تسخين البلازما إلى درجة عالية وتركها ومنا كافيا (بضع ثوان) كي تنضج، إذ لو كان عدد التفاعلات التي تجري في البلازما قليلا جدا تكون الطاقة المستردة غير كافية لبلوغ ما يسمى "الحصيلة المعدومة" أي لبلوغ التوازن الشامل ما بين الطاقة المصروفة لتحريك التفاعل (رأس مال الأستثمار) وبين الطاقة الناتجة عن تفاعلات الاندماج.

حصر البلازما

والخلاصة أنه يلزم عزل البلازما حراريا وعدم السماح لها بأن تبرد بتماسها مع جدران حاويتها لمناسبة إن وجدت. ولكن السؤال مرة أخرى ما هي مدة العزل اللازمة؟ تتدخل في الإجابة عن هذا السؤال عوامل رئيسية ثلاثة، والشيء المقبول الذي يمكن الأخذ به هو حاصل ضرب هذه العوامل فيما بينها، العامل الأول كما أوضحنا هو درجة حرارة البلازما T ، والثاني هو كثافة البلازما N أي عدد نوى الدوتوريوم والتريتيوم في وحدة الحجم. وأخيرا زمن احتباس البلازما، أي الزمن الذي يبقى قلب البلازما خلاله بتماس مع نفسه. فهذه أمور تتدخل بدهيا بالشيء المطلوب، فالأول يكسب النوى السرعة اللازمة للتصادم والثاني يزيد عدد النوى في طريقها، ويزيد من ثم احتمال التصادم مع النوى المجاورة، والأخير يتيح الزمن اللازم ، للتفاعل، فلكل هذه العوامل أهميتها الأساسية ولابد أن يكون متأثرا بها جميعا، أي متأثرا بحاصل ضربها فيما بينها أي بالجداء T.n.z المسمى جداء الأندماج. ويدل الحساب أنه يكفى بلوغ القيمة: واحد (ضغط جوي X ثانية) كي يتحقق ما أسميناه "الحصيلة المعدومة" أي بلوغ نقطة التعامل في موازنة الطاقة، إلا أن بلوغ هذا الهدف يعد مرحلة أولى لأن الهدف الذي نسعى إليه هو بلوغ الإنتاج المجدي للطاقة، أي الاستمرار حتى بلوغ ما يسمى مرحلة الاحتراق أي المرحلة التي تصبح معها تفاعلات الاندماج مستديمة ذاتيا (مستمرة من تلقاء نفسها) ويتوقع عند استتباب هذا النظام أن تعود نوى الهيليوم (ناتج الاندماج) بما تحمله من طاقة إلى داخل البلازما كي توفر استمرار حرارتها وتضمن بقاءها في درجة الحرارة اللازمة للتفاعل.

وعند تحقق هذا يكون لدينا ببساطة قطعة من نجم ملتهب تغذينا بأفضل أنواع الطاقة النظيفة نسبيا، والتي لا ينضب معينها ما دمنا قادرين على استخلاص الدوتيريوم من هيدروجين الأرض (صناعة الماء الثقيل مثلا) لأن الهيدروجين العادي يصلح للاندماج أيضا، ولكنه أضعف عطاء للطاقة بأربع مرات تقويبا.

قدور الاندماج

من كل ما تقدم يتضح سبب السعي الدءوب اللاهث الذي تقوم به الدول المتطورة الغنية راصدة ملايين الدولارات لتحقيق هذا الهدف العظيم بالتغلب على صعوبة. تحقيق الاحتراق والسيطرة على تماسك البلازما وعلى الحرارة الهائلة الناتجة.

أما أين يقف العالم المتطور الآن بأبحاثه هذه؟ وما هي النجاحات التقنية التي حققها في هذا المضمار؟، فيتضح من البحث في السبل الأساسية المتبعة لتحقيق هذه الغاية وتحديدا في "قدور" الاندماج التي تحققت لإنسان عصرنا، عصر الذرة أنه يمكن في الحقيقة الوقوف عند خمسة أنواع أساسية منها وهى:
1- التوكوماكات: منها التوكوماك (jet) الذى نجح نجاحا جيدا على طريق الحصيلة المعدومة. والتوكوماك (net) ، المشروع الأوربي الصرف، والمفاعل النووي الحراري الدولي التجريبي (iter) ويقوم على أساس حصر البلازما في أنبوب حلقي تحت تأثير مجال مغناطيسي قوي.

2- قدر الاندماج بأشعة ليزر: ومنها التوكوماك الليزري الليبي الصغير في تاجوراء قرب طرابلس (حيث يؤدي قذف الذرات بأشعة الليزر القوية إلى تحويلها إلى بلازما).

3- الاندماج بالحزم الأيونية: الآتية من عدة مسرعات موجهة وتشبه في مبدأ عملها قدور الليزر وهي لا توجد إلا في سانديا بالولايات المتحدة والمعروفة باسم (p B F A Ii) .

4- الاندماج البارد: فيه مسام معدن البلاديوم شره الامتصاص للهيدروجين الذي أثار اهتمام العالم أخيرا.

5- الاندماج بالكبس عن طريق تيارات شديدة جدا من رتبة المليون أمبير الذي سيبدأ العمل به عام 1993 في الامبيريال كولدج في لندن.

الاندماج النووي هو التفاعل الذي يتم فيه اندماج أنويه خفيفة لتكون أنويه أثقل. ويصاحب هذا الإندماج نقص في الكتلة يظهر علي شكل طاقة هائلة. و يتكون الوقود الاندماجي من نظائر الهيدروجين وهي الديوتيريوم s21Hوالتريتيوم s31Hوينتج عن اندماجهما نواة الهليوم a24He.

كيف يمكن تحقيق الاندماج النووي ؟
ويوجد الديوتيريوم في الماء الثقيل الذي يوجد في مياه المحيطات و البحار حيث يوجد بنسبه 1جم لكل 6ألاف جم من الماء العادي . ويفصل الماء الثقيل بواسطة التحليل الكهربائي ويلزم لذلك طاقة تعادل 60ألف كيلوات ساعة. أما التريتيوم فإنه يوجد في الطبيعة بكميات ضئيلة. لذلك فإنه يحضر عن طريق قذف الديوتريوم بالنيوترونات السريعة.و تحتاج تفاعلات الاندماج إلى درجات حرارة عالية تقدر بعشرات الملايين من الدرجات المئوية .

وفي هذه الدرجات تنفعل نواة ذرات الهيدروجين عن الإلكترونات و تصبح الأنويه كأنها سابحة في وسط من الإلكترونات وتعرف هذه باسم البلازماPlasma . ولكي تتغلب الأنوية علي قوة التنافر بينها يلزم وجود ضغط عال يبلغ عدة مليارات من الضغوط الجوية. ويطلق علي التفاعلات الاندماجية اسم التفاعلات النووية الحرارية Thermonuclear Reactions نظرا لأنها تحتاج إلى طاقة حرارية كبيرة لإتمامها.

هذه الشروط متوفرة في الشمس التي تحتوي علي كميات هائلة من الهيدروجين وحيث تتوافر درجات الحرارة العالية ( 15 مليون درجة مئوية ) و فيها تتحد 4 بروتونا و ينتج الهليوم وتعرف هذه العملية بدورة البروتون_ بروتون.





الاندماج النووي والقنبلة الهيدروجينية :

قد استخدم الاندماج النووي في تصنيع القنبلة الهيدروجينية Hydrogen or Thermonuclear bomb وقد أمكن توفير الشروط المطلوبة من درجة حرارة وضغط عال في هذه القنبلة بواسطة قنبلة نووية (ذرية) انشطارية لفترة قصيرة تساعد علي حدوث الاندماج بين نظائر الهيدروجين .

و تعادل قوة القنبلة الهيدروجينية قوة انفجار20 مليون طن من مادة الـ TNT و هي أقوي ألف مرة من قوة القنبلة الذرية و تسبب دمارا تاما في منطقة طولها 10 أميال و يصل تأثيرها الحراري إلى عشرين ميل و ينتشر غبارها الذري إلى ارتفاع 30 ألف قدم فوق سطح الأرض. و من أخطر المواد المشعة الناتجة من الانفجار نظير السترنشيومs3890Sr و عمر النصف له 27 سنة.

وإذا سقط علي الأرض يمتص من التربة بواسطة النباتات و منها إلى الحيوان وينتقل إلى الإنسان عندما يتغذى علي ألبانها و لحومها و يترسب s3890Srفي العظام مسببا سرطان العظام. و كان العالم الألماني هانز بيت Hans Bethe أول العلماء الذين فرضوا أن الطاقة الناتجة من النجوم مثل الشمس هي نتاج تفاعلات الاندماج النووي (1938). وقد أستحق عليها جائزة نوبل في الفيزياء عام 1967 .




مميزات الاندماج النووى :
يتميز الاندماج النووى عن الانشطار النووى كمصدر للطاقة بالمميزات الآتية :

1- وفرة الوقود الاندماجى فمن المعروف أن الديوتريوم s21Hيوجد فى الماء الثقيل بمياه البحر حيث يكون نسبته إلى الماء العادى 1 : 6000 . وهذه الكمية من الديوتريوم تكفى لإنتاج الطاقة اللازمة للبشرية لحوالى 20 ألف مليون سنة .

2- الطاقة الناتجة من المفاعل الاندماجى أكبر من طاقة المفاعل الانشطارى فالكيلو جرام من اليورانيوم ينتج طاقة تعادل 22.9 مليون كيلووات ساعة بينما الكيلو جرام من الديوتيريوم ينتج 177.5 مليون كيلووات ساعة أي أنها أكبر بحوالى ثمان مرات .

3- لا تتخلف نظائر مشعة من عملية الاندماج النووى بينما يتخلف من عملية الانشطار النووى نفايات عالية الإشعاع التى تقدر بحوالى 8000 طن سنوياً من المفاعلات النووية العاملة فى العالم


ومن أهم المشاكل التى تواجه العلماء لإحداث الاندماج النووى ما يأتى :

1- الحصول على درجة حرارة عالية تبلغ ملايين الدرجات المئوية لتحويل نظائر الهيدروجين s21H، s31H إلى حالة البلازما Plasma أي الحالة المتأينة منها ولتكتسب طاقة الحركة اللازمة للتغلب على قوى التنافر بين الأنوية .

2- تجميع البلازما فى مركز الوعاء الحاوى للوقود Plasma Confinement وذلك لإبعادها عن الجدران فتصبح البلازما معزولة ولا تتسرب طاقتها إلى الوسط المحيط بها وبذلك تحافظ على درجة حرارتها وترتفع فيها درجة الحرارة والضغط تدريجياً حتى تتم عملية الاندماج .

ولتحقيق هذه الشروط يوضع خليط الديوتيريوم والتريتيوم بكمية بسيطة داخل وعاء مفرغ إلى ضغط منخفض ويمر فى الوعاء تيار كهربى تبلغ شدته مئات الآلاف من الأمبيرات ونتيجة مرور التيار تنشأ حرارة عالية ترفع درجة حرارة نظائر الهيدروجين فتتحول إلى حالة البلازما وفى نفس الوقت يتولد مجال مغناطيسى قوى جداً يعمل على تجميع Confinement البلازما فى شريط رفيع وشديدة الإضاءة ذو ضغط وحرارة عالية وبعيداً عن جدران الوعاء .



- ومن الجدير بالذكر الإشارة إلى صعوبة الحصول على شدة التيار المطلوبة لأن هذا يتطلب بناء مولد كهربى الذى يقوم بتوليد فرق جهد يساوى مئات الملايين من الفولت بدون توقف . ويبين الشكل أساسيات أحد أجهزة الاندماج النووى الذى يعرف باسم توكاماك Tokamak
رد مع اقتباس