لأى عددين حقيقيين س ، ص - برهن أن : س^2 +/- س*ص + ص^2 >/= 0
(س + ص)^2 = س^2 + ص^2 + 2 س*ص
س*ص = 1/2*[(س + ص)^2 - (س^2 + ص^2)]
(س - ص)^2 = س^2 + ص^2 - 2 س*ص
- س*ص = 1/2*[(س - ص)^2 - (س^2 + ص^2)]
إذن :
س^2 + س*ص + ص^2 = س^2 + 1/2*[(س + ص)^2 - (س^2 + ص^2)] + ص^2
= 1/2*[(س + ص)^2 + (س^2 + ص^2)] > 0
س^2 - س*ص + ص^2 = س^2 + 1/2*[(س - ص)^2 - (س^2 + ص^2)] + ص^2
= 1/2*[(س - ص)^2 + (س^2 + ص^2)] > 0
وتساوى الصفر فى حالة س = ص = 0