ملتقى الفيزيائيين العرب - عرض مشاركة واحدة - كل شئ عن استقطاب الضوء
عرض مشاركة واحدة
  #2  
قديم 16-07-2011, 03:01
الصورة الرمزية الجيوفيزيائي+
الجيوفيزيائي+
غير متواجد
فيزيائي فعال
 
تاريخ التسجيل: Jul 2011
الدولة: Algeria
المشاركات: 169
افتراضي رد: كل شئ عن استقطاب الضوء

[frame="7 80"]توليد ضوء مستقطب استقطاباً إهليلجياً
الشكل (7)

يمكن توليد ضوء مستقطب استقطاباً إهليلجياً أو دائرياً باستعمال مقطب خطي مع صفيحة موجية wave plate. وهي عادة صفيحة بلورية أحادية المحور متوازية الوجهين تُهيّأ ليكون محورها الضوئي موازياً وجهيها، وهو أحد محورين متعامدين في الصفيحة يوصف أحدهما بالسريع والآخر بالبطيء، فإذا سقطت حزمة متوازية من ضوء وحيد اللون مستقطب خطياً سقوطاً ناظمياً على صفيحة موجية كهذه وكانت هناك زاوية بين الاهتزازة الساقطة ومحور الصفيحة الضوئي فإن الحزمة تنكسر انكساراً مضاعفاً لدى نفوذها في الصفيحة وتنتشر فيها اهتزازتان متعامدتان منحى يتطابق شعاعاهما ولكنهما يختلفان سرعة، (الشكل 7). فالاهتزازة الموازية للمحور السريع تنتشر بسرعة أكبر من سرعة انتشار الاهتزازة الموازية للمحور البطيء وينجم عن ذلك حدوث فرق في المسير الضوئي Δ بين الاهتزازتين عند بروزهما من وجه الصفيحة الثاني يساوي:

(9)

حيث ث: ثخن الصفيحة. ويوافق هذا فرقاً في الطور يساوي:

(10)

حيث نع: قرينة انكسار الصفيحة بالنسبة لاهتزازة الشعاع العادي، ونش: قرينة انكسارها بالنسبة لاهتزازة الشعاع الشاذ، وذلك من أجل الضوء الوحيد اللون ذي الطول الموجي l.
وتوصف الصفيحة بأنها صفيحة ربع موجية إذا كانت تولد في حالة الورود الناظمي فرقاً في الطور يساوي 90ْ، أي تولد فرقاً في المسير الضوئي يساوي l/4 أي إن ثخنها ث وفقاً للعلاقة (9) يساوي:


وبالمثل توصف الصفيحة بأنها نصف موجية إذا كانت تولِّد فرقاً في المسير الضوئي يساوي π/2 أي إن ثخنها ث يعطى بالعلاقة:


فإذا سقط ضوء وحيد اللون λ ومستقطب خطياً سقوطاً ناظمياً على صفيحة ربع موجية وكانت اهتزازته تميل 45ْ درجة على محورها السريع فإن هذه الاهتزازة تتحلل إلي مركبتين متساويتين موازيتين للمحور السريع وللمحور البطيء. ويمكن تمثيل هاتين المركبتين قبل اختراقهما الصفيحة بالعلاقتين:
س= بس جب (ى ز+طس)
ع= بس جب (ى ز+طس)
حيث س: المركبة وفق المحور س وع : المركبة وفق المحور ع، وحيث المحوران: س و ع يوازيان محوري الصفيحة ربع الموجية. ويمكن كتابة المركبتين بعد اختراقهما الصفيحة كما يلي بافتراض أن س تقدمت على ع بربع الموجة
أو
ع= بس جب ( ىز +ط س)
وهاتان العلاقتان تعطيان معادلة الاهتزازة الحاصلة وهي: س2+ع2=بس2 (11)
وهي معادلة اهتزازة دائرية يُمنى. وإذا كانت اهتزازة الضوء المستقطب خطياً تميل على المحور السريع بزاوية (-45ْ) درجة، كان دوران الاهتزازة الدائرية بالاتجاه المعاكس (أي يسرى).
فمن الممكن إذن باستعمال صفيحة ربع موجية ومقطب خطي الحصول على ضوء مستقطب دائرياً، وتوصف مجموعة هذه الصفيحة والمقطب بأنها مقطب دائري.
وإذا كانت اهتزازة الضوء المستقطب خطياً تميل على المحور السريع للصفيحة ربع الموجية بزاوية تختلف عن 45ْ، كانت الاهتزازة البارزة من الصفيحة ربع الموجية مستقطبة إهليلجياً ومعادلتها:

(12)

وهي معادلة قطع ناقص قائم منسوب إلى محوريه م س، م ع.
وعندما يسقط ضوء مستقطب دائرياً سقوطاً ناظمياً على صفيحة ربع موجية فإن الضوء البارز منها يكون مستقطباً خطياً وتميل اهتزازاته بـ45ْ على محوري الصفيحة.
أما سلوك الصفيحة ربع الموجية بالنسبة إلى الضوء المستقطب إهليلجياً ففيه شيء من التعقيد إذا لم يعرف منحيا محوري الاهتزازة الإهليلجية القائمة (المعادلة 12). أما إذا عرف هذان المنحيان في الضوء المستقطب إهليلجياً وكان سقوط هذا الضوء على صفيحة ربع موجية ليوازي هذان المنحيان محوري الصفيحة، فإن الضوء البارز منها يكون مستقطباً استقطاباً مستقيماً (خطياً).
وباتباع المعالجة السابقة نفسها من أجل صفيحة نصف موجية وجد أنه إذا سقط عليها ناظمياً ضوء مستقطب خطياً وتميل اهتزازته بزاوية يه على المحور السريع فإنه يبرز من الصفيحة نصف الموجية مستقطباً استقطاباً خطياً، ولكن اهتزازته تميل على المحور السريع بزاوية تساوي (-يه)، أي إنها تكون متناظرة مع الاهتزازة الواردة بالنسبة إلى المحور السريع. ويستفاد من هذه الخاصية باستعمال الصفيحة نصف الموجية في مقاييس الاستقطاب الدوراني لمعايرة السكريات.
تداخل الضوء المستقطب

الشكل (8)

يبين الشكل (8) أنه تبرز من الصفيحة الموجية حزمة ضوئية مؤلفة من اهتزازتين متعامدتين منحى، ويتوقف فرق المسير الضوئي بينهما على ثخن الصفيحة (العلاقة 9). وهاتان الاهتزازتان لا تولدان ظواهر التداخل لتعامدهما، غير أنه إذا سقطت الحزمة البارزة على محلل منحى اهتزازته وفق م ب، فإنه يمرِّر من الاهتزازتين المتعامدتين م س، م ع مركبتيهما وفق م ب، أي تبرز من المحلل اهتزازتان م ش، م شَ متفقتان منحىً، أي إنهما قابلتان لتوليد ظواهر التداخل. وتتوقف مواقع الأهداب المضيئة والمظلمة على قيمة ثخن الصفيحة إذا كان الضوء الساقط ناظمياً على الصفيحة وحيد اللون. أما إذا كان الضوء أبيض اللون فإن ظواهر التداخل تكون ملونة بسبب انطفاء بعض ألوان الطيف المستمر وظهور البعض الآخر. ويطلق على هذه الظاهرة «الاستقطاب اللوني». ويختلف اللون باختلاف ثخن الصفيحة وكذلك باختلاف زاوية سقوط الضوء عليها إذا لم يكن ناظمياً. ولا تظهر هذه الألوان إلا إذا كان فرق المسير الضوئي الذي تحدده العلاقة (9) أصغر من بضعة مكرونات. فمثلاً إذا جعلت صفيحة رقيقة من الميكا يختلف ثخنها من نقطة إلى أخرى بين مقطب ومحلل متعامدين وأضيئت بالضوء الأبيض فإنه يبرز من المحلل أضواء ملونة تختلف باختلاف ثخن الصفيحة، وتبدو الصفيحة إذا نظر إليها من خلال المحلل كأنها جزء من نافذة زجاجها متعدد الألوان.
ويستفاد من ظواهر الاستقطاب اللوني هذه في دراسة البلورات وبعض المواد العضوية كالألياف العضلية وحبات النشاء وقنوات النباتات المتباينة المناحي، ويستعمل لهذه الغاية المجهر الاستقطابي polariscope، وهو مجهر عادي أُلحق به مقطب قبل المادة المدروسة ومحلل في طريق الأشعة المكونة للصورة (الخيال).
دوران مستوي الاستقطاب

تتصف بعض المواد بأنها تدير مستوي استقطاب الضوء المستقطب خطياً الساقط عليها، وتوصف هذه المواد بأنها فعالة ضوئياً optically active. ويمكن أن تكون هذه المواد متماثلة المناحي صلبة أو سائلة أو غازية أو في حالة محاليل مثل زيت التربنتين وأبخرة الكافور وحمض الطرطر والمحاليل السكرية، كما يمكن أن تكون متباينة المناحي من البلورات كالكوارتز (المرو). وقد وجد فيها جميعاً أن زاوية دوران مستوى الاستقطاب هـ تتناسب مع المسافة ل التي يقطعها الضوء في المادة، أي:
هـ = ρ ل في البلورات (13)
أو: هـ = ρ ل ك في السوائل (14)
أو: هـ = ρل ت في المحاليل (15)
حيث ك: الكتلة الحجمية للسائل، وت: تركيز المادة الفعالة المذابة في مذيب غير فعال ضوئياً، و ρ: الدوران النوعي، وهو ثابت يختلف من مادة لأخرى، ويتوقف على طول موجة الضوء الوحيد اللون المستعمل λ ويتناسب معها عكساً على وجه التقريب.
وغالباً مايكون الدوران في المادة الفعالة نفسها في اتجاهين متعاكسين (نحو اليمين ونحو اليسار) مع ثبات القيمة المطلقة للدوران النوعي ρ في نوعيها اليميني واليساري.
وقد فسر فرينل دوران مستوي الاستقطاب على غرار تفسير هويغنز لظاهرة الانكسار المضاعف، وذلك بافتراضه أن الاهتزازة المستقيمة في الضوء المستقطب تتحلل حين تخترق المادة الفعالة إلى اهتزاتين دائريتين يمنى ويسرى تنتشران بسرعة واحدة وبالتواتر نفسه، إنما تكون سرعتاهما في الدوران مختلفتين بعض الاختلاف مما يؤدي إلى حدوث فرق في الطور بينهما ينتج منه دوران الاهتزازة الواردة لدى بروزها من المادة بزاوية الدوران هـ.
وتنشأ الفعالية الضوئية في السوائل والمحاليل من انعدام التناظر في جزيئات المادة، وتنشأ في البلورات كالكوارتز من فقدان مستوٍ للتناظر في بنيتها فإذا صهر الكوارتز فقد فعاليته الضوئية.
إن تطبيق العلاقة (15) أي: هـ= ρ ل ت، يسمح بحساب تركيز محلول مادة فعالة ما إذا كان الدوران النوعي ρلهذه المادة معروفاً، إذ يكفي قياس زاوية الدوران هـ لحساب التركيز ت. ويتم ذلك باستعمال مقياس الاستقطاب الدوراني. وتؤلف هذه العملية مايدعى «المعايرة الاستقطابية»، وهي أسرع من المعايرة الكيمياوية وأكثر منها دقة، ولا تستدعي تخريب المادة المدروسة. وتستعمل هذه المعايرة الاستقطابية كثيراً في مختبرات الكيمياء لتقدير نقاوة المواد ومتابعة سير التفاعلات وعمليات التجزيء. وأكثر هذه التطبيقات أهمية معايرة السكريات وخاصة السكروز C12H22O11
الانكسار المضاعف الطارئ

يمكن لبعض الأوساط الشفافة المتامثلة المناحي أن تصبح متباينة المناحي وذات انكسار مضاعف إذا تعرضت لقوى خارجية كالضغط أو الشد أو إذا أثر فيها حقل كهربائي أو حقل مغنطيسي. وتحتفظ هذه الأوساط بخواصها المكتسبة هذه مادامت القوى الخارجية تؤثر فيها، وتفقد هذه الخواص بزوال هذه القوى.
الانكسار المضاعف الميكانيكي

يكتسب مكعب شفاف من الزجاج أو اللدائن خاصية البلورة الأحادية المحور السالبة فيها إذا طُبِّق على وجهين متقابلين فيه ضغط شديد، ويكون منحى المحور الضوئي منحى الضغط المطبق عليه نفسه. وتتناسب شدة الانكسار المضاعف نع- نش طرداً مع الضغط المطبق وتتوقف قيمتها على طبيعة الوسط.
الشكل (9) كتلة مربعة طبق عليها ضغط قطري وفق السهمين

وينشأ عن تطبيق ضغوط غير منتظمة على كتلة زجاجية مثلاً أن يكون توزع الإجهادات فيها غير منتظم أيضاً، أي تختلف شدة الانكسار المضاعف من نقطة لأخرى وتختلف بالتالي المسارات الضوئية للأشعة التي تخترق تلك الكتلة منكسرة انكساراً مضاعفاً، فتتكون صورة تداخل تظهر المناطق ذات الإجهادات المختلفة، (الشكل 9). وقد أصبح هذا أساساً لطريقة ضوئية في تحليل الإجهادات سميت المرونة الضوئية photoelasticity. وقد تطورت هذه الطريقة تطوراً كبيراً وأصبح من الممكن باتباعها تحليل الإجهادات في هندسة الإنشاءات كالجسور والجيزان بدقة تفوق كثيراً الدقة في الطرائق الأخرى. فيصنع للمنشأ نموذج مصغر من مادة متماثلة المناحي شفافة، ويجعل النموذج بين مقطب ومحلل متعامدين وتطبَّق عليه مجموعة من القوى تمثِّل بنسبة التصغير نفسها القوى التي يتوقع أن تطبَّق على المنشأ الأصلي، فتولد أهداب تداخل تبيِّن الإجهادات وتوزعها في النموذج المختبر. كذلك تتبع الطريقة نفسها للكشف عن الإجهادات الداخلية التي يمكن أن تحدث عند تبريد الزجاج ولاسيما مايستعمل منه في صناعة العدسات والمواشير وغيرها من الأدوات الضوئية.
الانكسار المضاعف الكهربائي

الشكل (10)

تصبح معظم السوائل ذات انكسار مضاعف حين توضع في حقل كهربائي فتكتسب خواص البلورة الأحادية المحور الموجبة التي يتفق محورها الضوئي مع منحى الحقل الكهربائي وتتناسب شدة الانكسار المضاعف الطارئ (نع- نش) مع مربع شدة الحقل الكهربائي وتتوقف على طول موجة الضوء وعلى طبيعة السائل. ويمكن ملاحظة هذه الظاهرة بإجراء التجربة المبينة في الشكل (10) حيث يُغمر مكثف كهربائي في سائل من النتروبنزين يملأ حوضاً زجاجياً، وتجعل المجموعة المسماة خلية كِر Kerr (نسبة للعالم كِر) بين مقطب ومحلل متعامدين لينطفئ الضوء بعد المحلل إذا لم يطبق فرق كمون على لبوسي المكثف، ولكنه يظهر إذا طَبَّق فرق كمون كافٍ. وعندما يطبق على الخلية فرق كمون ذو تواتر (تردد) عالٍ يصدر الضوء من الخلية ويحتجب (ينطفئ) في برهة قصيرة جداً. كذلك استعملت خلية كِر مغلاقاً كهرضوئيا electrooptic shutter. كذلك استعملت خلية كر على هذا النحو بدلاً من الدولاب المسنن في تجربة فيزو Fizeau لقياس سرعة الضوء.
الانكسار المضاعف المغنطيسي

حين يوضع سائل في حقل مغنطيسي شديد يرى أن هذا السائل يكتسب خواص البلورة الأحادية المحور التي يتفق منحى محورها الضوئي مع منحى الحقل المغنطيسي. وتتناسب شدة الانكسار المضاعف الطارئ مع مربع شدة الحقل وتتوقف على طول موجة الضوء وعلى طبيعة السائل.
[hr]#ff0000[/hr]
مراجع للاستزادة


[/frame]
رد مع اقتباس