ملتقى الفيزيائيين العرب > منتديات أقسام الفيزياء > منتدى الرياضيات. | ||
مسائل وحلول - هندسة مستوية للمرحلة الثانوية |
الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
#23
|
|||
|
|||
![]() ![]() ![]() الحل بالتفصيل : العمل : نمد المنصف د ص للزاوية أ د ب ليقابل محيط الدائرة فى م نمد المنصف د س للزاوية أ د ج ليقابل محيط الدائرة فى هـ نصل م ج ، هـ ب الاثبات : القوس ب د = القوس د ج فتكون الزوايا المحيطية لكلا القوسين متساوية زاوية د ب ج = زاوية د ج ب = زاوية ب أ د = زاوية ج أ د إذن : أ د منصف للزاوية ب أ ج زاوية أ ب ج = زاوية أ د ج ... ، ( محيطيتان للفوس أ ج ) زاوية أ د هـ = زاوية ج د هـ ، حيث هـ د منصف للزاوية أ د ج زاوية أ ب هـ = زاوية أ د هـ ... ، ( محيطيتان للقوس أ هـ ) زاوية ج ب هـ = زاوية ج د هـ ... ، ( محيطيتان للقوس ج هـ ) إذن : هـ ب منصف للزاوية أ ب ج وبالمثل زاوية أ ج ب = زاوية أ د ب ... ، ( محيطيتان للقوس أ ب ) زاوية أ د م = زاوية ب د م ، حيث م د منصف للزاوية أ د ب زاوية أ ج م = زاوية أ د م ... ، ( محيطيتان للقوس ا م ) زاوية ب ج م = زاوية ب د م ... ، ( محيطيتان للقوس ب م ) إذن : م ج منصف للزاوية أ ج ب منصفات الزوايا للمثلث أ ب ج تتقاطع فى نقطة و ( ملحوظة : و لا تنتمى الى القطعة المستقيمة ص س ) نصل ص و ، س و فى المثلث ص ب ب1 زاوية ص ب1 ب خارجة عن المثلث ب1 ب د زاوية ص ب1 ب = زاوية ب1 د ب + زاوية ب1 ب د زاوية ب ص ب1 خارجة عن المثلث د ص أ زاوية ب ص ب1 = زاوية ص د أ + زاوية ص أ د وحيث : زاوية ب1 د ب = زاوية ص د أ ، زاوية ب1 ب د = زاوية ص أ د إذن : زاوية ص ب1 ب = زاوية ب ص ب1 زاوية ب ص ب2 = زاوية ب ب1 ب2 = 90 درجة ويكون : ب و عمودى على د ص المثلثان د ب ب2 ، د و ب2 متطابقان حيث : د ب2 مشترك ، زاوية ب د ب2 = زاوية و د ب2 ، زاوية د ب2 ب = زاوية د ب2 و = 90 درجة فيكون : ب ب2 = ب2 و المثلثين ب ص ب2 / و ص ب2 متطابقين حيث : ص ب2 مشترك ، ب ب2 = ب2 و ، زاوية ب ب2 ص = زاوية و ب2 ص = 90 درجة فيكون : زاوية ب ص ب2 = و ص ب2 وحيث : زاوية ب ص ب2 = زاوية ب ب1 ص إذن : زاوية و ص ب1 = زاوية ب ب1 ص وهما زاويتان متساويتان بالتبادل للقاطع ص ب1 للقطعتين المستقيمتين ص و ، ب ج ويكون : ص و يوازى ب ج وأترك للطالب الاستكمال بنفس الخطوات حيث زاوية س ج1 ج خارجة عن المثلث د ج1 ج فتساوى ... زاوية ج س ج1 خارجة عن المثلث أ س د فتساوى ... وهكذا لاستكمال الخطوات للوصول الى أن س و توازى ج ب فيكون : ص و س على استقامة واحدة وتوازى ب ج |
الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1) | |
أدوات الموضوع | |
انواع عرض الموضوع | |
|
|