أثبت أن: [(ن + 1) ( ن + 2 ) *.......................*2ن ] / [ 1*3*5*........(2ن ــ 1 )] = 2^ن
[(ن + 1) ( ن + 2 ) *.......................*2ن ] = 2ن! / ن!
[ 1*3*5*........(2ن ــ 1 )] = (2ن - 1)! / 2^(ن - 1) * (ن - 1)!
المقدار = [2ن! / ن!] ÷ [(2ن - 1)! / 2^(ن - 1) * (ن - 1)!]
= [ 2ن! * (ن - 1)! * 2^(ن - 1) ] ÷ [ن! * (2ن - 1)!]
= [2ن*(2ن - 1)! * (ن - 1)! * 2^(ن - 1)] ÷ [ن*(ن - 1)! *(2ن - 1)!]
= 2^ن