ملتقى الفيزيائيين العرب > منتديات أقسام الفيزياء > منتدى الرياضيات. | ||
مسائل وحلول - الجبر |
الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
#9
|
|||
|
|||
![]() أثبت أن: [(ن + 1) ( ن + 2 ) *.......................*2ن ] / [ 1*3*5*........(2ن ــ 1 )] = 2^ن
[(ن + 1) ( ن + 2 ) *.......................*2ن ] = 2ن! / ن! [ 1*3*5*........(2ن ــ 1 )] = (2ن - 1)! / 2^(ن - 1) * (ن - 1)! المقدار = [2ن! / ن!] ÷ [(2ن - 1)! / 2^(ن - 1) * (ن - 1)!] = [ 2ن! * (ن - 1)! * 2^(ن - 1) ] ÷ [ن! * (2ن - 1)!] = [2ن*(2ن - 1)! * (ن - 1)! * 2^(ن - 1)] ÷ [ن*(ن - 1)! *(2ن - 1)!] = 2^ن |
الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1) | |
انواع عرض الموضوع |
![]() |
![]() |
![]() |
|
|