ملتقى الفيزيائيين العرب > منتديات أقسام الفيزياء > منتدى فيزياء الـكـــــم. | ||
ميكانيكا الكم بين مبدأ عدم التحديد والطبيعة الاحتمالية |
الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
#16
|
|||
|
|||
![]() بسم الله الرحمن الرحيم
و فيكم بارك الله - " و أتساءل في هذا الإطار عن علاقة مبدأ عدم التحديد بهذا الجانب الاحتمالي فبعض المصادر تذكر أن الجانب الاحتمالي مستقل عن مبدأ عدم التحديد، و مصادر أخرى تفيد بأن مصدر هذا الجانب هو مبدأ عدم التحديد بسبب عدم امكانية كون الدالة الموجية تمثل معادلة مسار كما هو الحال في الميكانيكا التقليديةعدم امكانية كون الدالة الموجية تمثل معادلة مسار كما هو الحال في الميكانيكا التقليدية .عدم امكانية كون الدالة الموجية تمثل معادلة مسار كما هو الحال في الميكانيكا التقليدية . . و هل هناك دلائل أخرى تؤكد هذا الجانب." الجانب الاحتمالي مستقل عن مبدأ عدم التحديد استقلالا بنيويا - يعني يكفي أن تأخذي بعين الاعتبار الجانب الاحتمالي و الازدواجية الموجية - الجسيمية للأشياء - لصياغة نظرية الكم ... معادلة شرودنجر 1926 ، لكن هذا الجانب يقود في النهاية لمبدأ عدم التحديد هايزنبرج 1927 الأسباب التي تجعل المراجع تركز على مبدأ عدم التحديد هو كونه نتيجة جديدة غريبة لم تكن واردة في الفيزياء الكلاسيكية ، لكن على غرابتها فانها فعاله في اعطاء نتائج و تفسيرات مهمة لعدد كبير من الظواهر و كما تعلمين فان وجود مبدأ عدم التحديد طاقة - زمن مثلا هو الذي يسمع بحدوث بعض التفاعلات في فيزياء الجسيمات رغم كونها مستحيلة كلاسيكيا لعدم انحفاظ الطاقة خلال التفاعل الفيزيائي ، لكن مبدأ عدم التحديد قادر على اعطاء تفسير لهته الظواهر بادخال مفهوم الجسيمات الافتراضية لو نرجع للقول بأن " عدم امكانية كون الدالة الموجية تمثل معادلة مسار كما هو الحال في الميكانيكا التقليدية ." فارى والله أعلم أن هذا القول فيه نوع من مجانبة البناء الرياضي لنظرية الكم ... اذ نحن هنا بصدد ادخال مسلمة جديدة تتعلق بالجانب الاحتمالي للانظمة الكمية ، و لو تكون لنا فرصة ان شاء الله نثبت أنه يمكن الصعود لمعادلات الحركة - بالمفهوم القديم - انطلاقا من - الجانب الاحتمالي و الازدواجية - و دمجهما بالاعتبارات الفيزيائية العامة للحصول على الصيغة الرياضية لمعادلة الحركة في نظرية الكم - معادلة شرودنغر - حيث تمثل دالة الموجة * حلا للمعادلة و بالتالي وصفا للنظام الفيزيائي ، بذات الشكل الذي تمثل فيه معادلة نيوتن الثانية أو معادلات لاغرانج أو هاملتون أو غيرهم صيغا رياضية للنظرية الكلاسيكية حصلنا عليها من اعتبارات فيزيائية عامة ، و يكون شعاع الموضع حلا للمعادلة ممثلا لحالة النظام الفيزيائي ** كذلك هناك وجه شبة أخر بين دالة الموجة في نظرية الكم و شعاع الموضع في النظرية الكلاسيكية ذلك أن الطبيعة الاحتمالية تفرض علينا عدم معرفة موضع الجسيم بدقة في الحالة العامة ... و كل ما نصبو اليه هو معرفة احتمال وجود جسيم في هذا الموضع أو ذاك عند اجراء القياس اذ تمثل دالة الموجة طويلة احتمالية مرفقة بكل المواضع الممكنة - و يمثل مربعها المعقد - كثافة احتمالية لوجود جسيم في موضع ما ... وهذها هو التماثل الموجود بين دالة الموجة و شعاع الموضع - " و ما هي القيود الخاصة التي تميز تلك الطبيعة الاحتمالية في ميكانيكا الكم." معذرة لم أفهم هذا الشطر بشكل جيد فهل وضحتي المقصود أكثر لو سمحت ؟ - " أعتقد أن تفضلك بالقول في أول مشاركاتك فيه إشارة لذلك "- لم لا يمكن تحديد التغير في الطبيعة بشكل عشوائي ، أي لم دائما يوجد حد أدنى ملاحظ للتغير في الطبيعة ؟ هناك عدة تفسيرات لهذه الظاهرة ، و هي التي تمثل الجوهر الاحتمالي لا الاحصائي لنظرية الكم ،" فهل يمكن أن تزيدنا توضيحا لهذا الأمر" في مناقشات سابقة تحدثنا مثلا على أن الجسيمات الأولية غير قابلة للانقسام على هذا الأساس فان أي عوارض قياس كما هو الشأن في تجربة المحلل يجعلها تتصرف بشكل انتخابي أي على كل جسيمة منفردة أن تختار - مجموع هذه الاختيارات يسمى قيما ذاتية ، و الحالات التي تلائم هته الاختيارات تسمى دوالا ذاتية - لو عدنا مثلا الى تجربة المحلل بحيث أرسلنا حزمة جسيمات باتجاه المحلل بطريقة تجعل 50 بالمئة يمر و50بالمئة لا يمر هنا ما معنى أنه يمكننا تحديد التغير في الطبيعة بشكل عشوائي ... هذا يقودنا مباشرة الى الغاء فكرة القيم و الدوال الذاتية كما هو الحال في النظرية الكلاسيكية ، و كل ما سنحصل عليه بناءا على ذلك جسيمات مشطورة نصفين متساوين نصف خرج و نصف بقي داخل المحلل .... لكن هته النتيجة الغريبة لم يسبق و أن شوهدت اذن ما الذي يحدث في الحقيقة .... هنا يجب أن نتبنى تفسير نظرية الكم لتكن f1 دالة الموجة الذاتية التي تسمح بخروج الجسيم من المحلل f2 دالة الموجة الذاتية التي تبقى الجسيم داخل المحلل بناءا عليه فان دالة الموجة الكلية الواضفة للجسيم الكمي f قبل الدخول في المحلل تكون على النحو f=a(f1 +f2) حيث أن a ثابت التقنين مساو ل مقلوب جذر اثنين اذا كان الجسيم سيخرج من المحلل وجب أن يتخذ حالة موصوفة بالدالة f1 اذا كان سيبقى داته يجب أن تتحول الى f2 لكن ما هي الألية المسؤولة عن ذلك في أداة القياس و التي أدت الة الى هذا التغير الكبير في حالة النظام الفيزيائي الجواب الأكيد أدوات القياس الكلاسيكية لا تجار دقة الأنظمة الكمية فهي لا تعطينا وصفا كاملا لكيفية حدوث هذا التغير أجوبة أخرى فرضيات و نماذج تفسيرية طرحت من قبل الفيزيائيين ليس لها لحد الأن سند تجريبي قوي EPR ، المتغيرات الخفية ... - " و أتساءل بعد اذنك هل يختلف الأمر في ميكانيكا الكم عن المنطق الكلاسيكي بأننا نستخدم الإحصاء لمعرفة المعالم المجهولة في دوال الكثافة؟" ماهو دور الاحصاء في كلا النظريتين في النظرية الكلاسيكية لما نصادف عددا كبيرا من الجسيمات فان الحلول الرياضية الصريحة للمسائل تصبح صعبة و معقدة بل و ربما مستحيلة ... لكن من حيث المبدأ ممكنة اذ لا قيود على تحديد الشروط الابتدائية للانظمة الفيزيائية و لا قيود على تحديد القوى بينهم ...لكن المسألة هنا تعقيد رياضي يجب حله بطرق احصائية - الترمودينمكس ، فيزياء البلازما ... - و التي تورد ما يسمى نظريات احصائية كالنظرية الحركية في كلى العلمين لكن التقدم التكنولوجي - في ميدان الحاسب تحديدا - يدعم القول بأن التعقيد هنا ما هو الا تعقيد رياضي اذ مثلا في مجال البلازما يمكن حاليا التعامل مع عدد جد كبير من الجسيمات بشكل فردي في مسائل ثنائية البعد داخل حواسيب متقدمة صحيح أن الحلول تعطى بطرق عددية Numerical Methods لكن هذا لا يطرح مشكلا ما دامت شروط تقارب الحلول محققه لما نرجع للأنظمة الكمية حتى بالنسبة للجسيمة المنفردة فان القيد مفروض مباشرة على تحديد الموضع و السرعة بالمبدأ ... يعنى أن الفيزياء الكلاسيكية عاجزة عن ايجاد تفسيرات منطقية ... و ان كون كل جسيم يجب عليه انخاب مسلك ما عند تعامله مع أداة قياس ما - كا رأينا في تجربة المحلل - يوجب علينا وضع اعتبارات احتمالية للنظام الكمي حتى وان كان جسيمة منفردة و يبقى دور الاحصاء هنا هو حساب الكثافة الاحتمالية فلو أرسلنا جسيما منفردا موصوف بالدالة f سواء أخرج أو بقي لا يمكننا تحديد الكثافة الاحتمالي و بالتالي معاملات الدالة f من أجل التحديد الدقيق نرسل عددا كبيرا من الجسيمات بنفس الحالة الفيزيائية فلو أن مليون جسيم خرج و مليونا بقي لقلنا ان دالة احتمال الخروج 50 بالمئة و احتمال البقاء 50 بالمئة و كانت دالة الموجه f : f=a(f1 +f2 * أهملنا في هذا الرد درجات الحرية الأخرى من أجل التبسيط لكن المفاهيم تنتقل مباشرة اذ لا تصف معادلة شرودنجر اللف المغزلي مثلا ** بدقة أكبر و كما هو معروف فان معرفة الموضع عند لحظة معينة يسمح بمعرفة حالة النظام الكلاسيكي في ذات اللحظة لكن هذا لا يعطينا وصفا دقيقا عن حالة النظام الفيزيائي كوننا عاجزون عن تحديد حالته في زمن لاحق لذلك كان لزاما علينا معرفة قانون تغير شعاع الموضع مع الزمن أو السرعة لذلك فان حالة النظام الكلاسيكي معرفة تماما بالموضع و السرعة ، أو كذلك الموضع و السرعة الابتدائيين و قانون الحركة الذي يحكم تطورهما ، عند تطبيق ذات المحاكمة على النظام الكمي نجد أن دالة الموجة اذا كان الجسيم سيخرج من المحلل وجب أن يتخذ حالة موصوفة بالدالةتعرف حالة النظام الفيزيائي عند لحظة معينة و لمعرفة حالته عند زمن متقدم يجب أن نعرف قانون تغير هذه الدالة مع الزمن - يجب أن نكون على دراية بدالة الموجة و مشتقتها الجزئية بالنسبة للزمن - محاولة حل هذه المسألة تقود مباشرة لمعادلة شرودنجر ، و ليس كما يعتقد البعض أن هذه المعادلة وضعت بشكل حدسي تمت بعون الله و حفظه و الحمد لله رب العالمين |
الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1) | |
انواع عرض الموضوع |
![]() |
![]() |
![]() |
|
|