ملتقى الفيزيائيين العرب > منتديات أقسام الفيزياء > منتدى الرياضيات. | ||
مسائل وحلول - حساب مثلثات للمرحلة الثانوية |
الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
#27
|
|||
|
|||
![]() حل المعادلة : ظا^-1( س + 1 ) + ظا"^-1 ( س ــ 1 ) = ظا^-1(8/31) نضع المعادلة على الصورة : هـ + ى = ع حيث : ظاهـ = (س + 1) ، ظاى = (س - 1) ، ظاع = 8/31 = 0.258 زاوية ع = 14.47 درجة (فى الربع الأول) أو ط + 14.47 (فى الربع الثالث) ظا(هـ + ى) = [ظاهـ + ظاى]/[1 - ظاهـ ظاى] = 2 س/[2 - س^2] 8 س^2 + 62 س - 16 = 0 (4 س - 1)(2 س + 16) = 0 س = 1/4 ، أو س = - 8 لتحقيق المعادلة مع الوضع فى الاعتبار تقدير الزوايا فى الدورة الأولى فقط عند س = 1/4 ظاهـ = 1/4 + 1 = 1.25 زاوية هـ = 51.34 (فى الربع الأول) أو ط + 51.34 (فى الرع الثالث) ظاى = 1/4 - 1 = - 0.75 زاوية ى = - 36.86 (فى الربع الرابع) أو ط - 36.87 (فى الربع الثانى) (هـ + ى) = 51.34 - 36.87 = 14.47 درجة (فى الربع الأول) وحيث زاوية ع = 14.47 ، ... ... تتحقق المعادلة للزاوية ع فى الربع الأول عند س = - 8 ظاهـ = - 8 + 1 = - 7 زاوية هـ = - 81.87 (فى الربع الرابع) أو ط - 81.87 (فى الربع الثانى) ظاى = - 8 - 1 = - 9 زاوية ى = - 83.66 (فى الربع الرابع) أو ط - 83.66 (فى الربع الثانى) (هـ + ى) = - 81.87 - 83.66 = - 165.52 = 194.47 = ط + 14.47 (فى الربع الثالث) وحيث زاوية ع = ط + 14.47 ، ... ... تتحقق المعادلة للزاوية ع فى الربع الثالث |
الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1) | |
انواع عرض الموضوع |
![]() |
![]() |
![]() |
|
|