ملتقى الفيزيائيين العرب > قسم المنتديات العامة > منتدى الفيزياء العام | ||
الفيزياء مقال تفصيلي 1 |
الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
#2
|
|||
|
|||
![]() [size="7"]البرق هو تفريغ كهربائي لشحنات ساكنة يحدث بين السحب في ما بينها أو مع الأرض (الصاعقة).
تدرس الكهرطيسية التفاعل الذي يتم بين الجسيمات المشحونة وبين المجالات الكهربائية والمجالات المغناطيسية. ويمكن تقسيم الكهرطيسية إلى؛ كهرباء ساكنة أو "إلكتروستاتيكا" وهي تدرس الشحنات والحقول الكهربائية الساكنة، والديناميكا الكهربائية أو "إلكتروديناميكا" وهو يصف التفاعل بين الشحنات المتحركة والإشعاع الكهرطيسي. ومع أن المعرفة الكهرباء والمغنطيسية تطورت منذ القدم بشكل منفصل، فقد توصلت النظرية الكلاسيكية للكهرطيسية، خلال القرنين الثامن والتاسع عشر، إلى تحديد العلاقة بين الظاهرتين من خلال قانون لورنتز ومعادلات ماكسويل. وتمكنت هذه الأخيرة من وصف الموجات الكهرومغناطيسية وفهم الطبيعة الموجية للضوء. تهتم الكهرباء الساكنة بدراسة الظواهر المرتبطة بالأجسام المشحونة في حالة السكون، والقوى التي تسلطها على بعضها البعض كما يصفها قانون كولوم. ويمكن تحليل سلوك هذه الأجسام من تجاذب أو تنافر من خلال معرفة القطبية والمجال الكهربائي المحيط بها، حيث يكون متناسبا مع مقدار الشحنة والأبعاد التي تفصلها. للكهرباء الساكنة عدة تطبيقات، بدءا من تحليل الظواهر الكهرطيسية مثل العواصف الرعدية إلى المكثفات التي تستعمل الهندسة الكهربائية. وعندما تتحرك الأجسام المشحونة كهربائيًا في حقل كهرومغناطيسي فإنها تنتج مجالا مغناطيسيا يحيط بها فتختص الديناميكا الكهربائية بوصف الأثار التي تنتج عن ذلك من مغناطيسية وإشعاع الكهرومغناطيسي وحث كهرومغناطيسي. وتنضوي هذه المواضيع ضمن ما يعرف بالديناميكا الكهربائية الكلاسيكية، حيث تشرح معادلات ماكسويل هذه الظواهر بطريقة جيدة وعامة. وتفضي هذه النظريات إلى تطبيقات مهمة ومنها المولدات الكهربائية والمحركات الكهربائية. وفي العشرينيات من القرن العشرين، ظهرت نظرية الديناميكا الكهربائية الكمومية وهي تتضمن قوانين الميكانيكا الكمومية، وتصف التفاعل بين الإشعاع الكهرطيسي والمادة عن طريق تبادل الفوتونات. وهناك صياغة نسبية تقدم تصحيحات لحساب حركة الأجسام التي تسير بسرعات تقارب سرعة الضوء. تتدخل هذه الظواهر في معجلات الجسيمات والأنابيب الكهربائية التي تحمل فروق جهد وتيارات كهربائية عالية. تعتبر القوى والظواهر الناجمة عن الكهرطيسية من أكثر الأمور المحسوسة في حياتنا اليومية بعد تلك التي تسببها الجاذبية. فعلى سبيل المثال، الضوء عبارة عن موجة كهرومغناطيسية مرئية تشع من جسيمات مَشحونة ومُعَجلة. وتجد مبادئ الكهرومغناطيسية إلى يومنا هذا العديد من التطبيقات التقنية والعلمية والطبية. وما الأجهزة الكهربائية مثل الراديو، والمرناة، والهاتف، والقطارات المغناطيسية المعلقة، والألياف البصرية، وأجهزة الليزر إلا بضع أمثلة عن هذه التطبيقات التي صنعت تقدمًا نوعيًا في تاريخ البشرية. [عدل]الديناميكا الحرارية والميكانيكا الإحصائية مقالات تفصيلية :الديناميكا الحرارية و الميكانيكا الإحصائية لتحويل جرام من الثلج، درجة حرارته − 20 درجة مئوية، إلى ماء سائل، في ظروف الضغط العادية، نحتاج إلى طاقة مقدارها حوالي 83 سعرة حرارية (أي ما يعادل 350 جول). تختص الديناميكا الحرارية أو "الترموديناميكا" بدراسة انتقال الطاقة وتحولها في النّظم الفيزيائية، والعلاقة بين الحرارة والعمل والضغط والحجم. تقدم الديناميكا الحرارية الكلاسيكية وصفا عيانيا لهذه الظواهر دون الخوض في التفاصيل مجهرية الكامنة ورائها. فيما تخوض الميكانيكا الإحصائية في تحليل السلوك المعقد للمكونات المجهرية (ذرات، جزيئات) وتستنج منها كَمِيًا الخصائص العيانية للنظام وذلك بواسطة طرق إحصائية. وضعت أسس الديناميكا الحرارية خلال القرنين الثامن والتاسع عشر، وذلك نتيجة للحاجة الملحة في زيادة كفاءة المحركات البخارية. يتأسس فهم ديناميكية الطاقة والمتغيرات في نظام معين على أربعة مبادئ أساسية تسمى قوانين الديناميكا الحرارية. وتعمل معادلات الحالة على تحديد العلاقة بين نوعين من متغيرات العيانية التي تعرف حالة الأنظمة؛ متغيرات الامتداد مثل الكتلة والحجم والحرارة، ومتغيرات الشدّة مثل الكثافة ودرجة الحرارة والضغط والكمون الكيميائي. ويمكن من خلال قياس هذه المتغيرات التعرف إلى حالة التوازن أو التحول التلقائي في النظام. نظام التحريك الحراري المثالي - تنتقل الحرارة من ساخنة (غلاية) إلى باردة (مكثّف) وينتج عنها عمل ينص القانون الأول للديناميكا الحرارية على مبدئ حفظ الطاقة، وذلك بأن التغير في الطاقة الداخلية لنظام مغلق وساكن، يساوي كمية الطاقة المتبادلة مع الوسط الخارجي على شكل حرارة أو عمل. فيما ينص القانون الثاني على أن الحرارة لا يمكنها المرور بطريقة تلقائية من جسم ذي درجة حرارة منخفضة إلى آخر ذي درجة حرارة مرتفعة بدون الإتيان بعمل. وذلك يعني أنه من غير الممكن الحصول على عمل دون أن تفقد منه كمية على شكل الحرارة. وتوصل لهذين القانونين الفيزيائي الفرنسي سادي كارنو في بداية القرن التاسع عشر. وفي سنة 1865، أدخل الفيزيائي الألماني رودلف کلاوزيوس دالة الإعتلاج، ومن خلالها يصاغ القانون الثاني على أن "التحول التلقائي في نظام معين لا يمكن أن يتحقق بدون أن ترتفع هذه القيمة فيه وفيما حوله". يُعبر الإعتلاج، من وجهة نظر عيانية، على عدم إمكانية تسخير كل الطاقة في نظام ما للقيام بعمل ميكانيكي. وتصفها الميكانيكا الإحصائية على أنها قياس لحالة الفوضى للمكونات المجهرية للنظام من ذرات وجزيئات. تتكتسي الديناميكا الحرارية أهمية كبرى في العديد من المجالات؛ في الكيمياء والهندسة الكيميائية وعلم الأحياء وإنتاج الطاقة والتبريد. فعلى سبيل المثال، يمكن للديناميكا الحرارية تفسير الأسباب التي تجعل بعض التفاعلات الكيميائية تتم من تلقاء نفسها، فيما لا يمكن ذلك للبعض الآخر. [عدل]النسبية مقالات تفصيلية :نظرية النسبية الخاصة و نظرية النسبية العامة أحد أدق الاختيارات التي أجريت على نظرية النسبية العامة كانت من قبل المسبار الفضائي كاسيني-هايجنس، في 10 أكتوبر 2003: شعاع الراديو (باللون الأخضر) الذي أرسل من الأرض نحو المسبار وقع تأخيره، تحت تأثير الإنحناء الذي أحدثته جاذبية الشّمس في بنية الزمكان (باللون الأزرق)، وذلك بالمعدل الذي تنبئت به النظرية[14] . نظرية النسبية هي بنية رياضية أكثر عمومية من تلك التي تأسست عليها الميكانيكا الكلاسيكية، وتصف حركة الأجسام بسرعات تقارب سرعة الضوء، أو أنظمة ذات كُتلٍ هائلة، وتشتمل على شقين هما نظرية النسبية الخاصة ونظرية النسبية العامة [15].
__________________
< اتقوا الله و يعلمكم الله > |
الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1) | |
انواع عرض الموضوع |
![]() |
![]() |
![]() |
|
|