ملتقى الفيزيائيين العرب > منتديات أقسام الفيزياء > منتدى فيزياء الـكـــــم. | ||
spin observable |
الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
#5
|
|||
|
|||
![]()
فمثلاً يمكن اعتبار مصفوفات باولي على انها مركبات للمتجه و هكذا فان اللف المغزلي فى اي اتجاه اعتباطي يُعطى بالضرب القياسي التالي (اسقاط المتجه سيجما فى الاتجاه r) وفي نظام الاحداثيات الكروية نحصل على و هذه هي نفس النتيجة التى توصلنا اليها سابقاً و هي تمثل مؤثر اللف المغزلي (اذا ضربناها فى نصف hbar) فى اي اتجاه اعتباطي و التى اطلقنا عليه الاسم S فى المشاركة رقم 8 يمكن ايضاً الاستفادة من مصفوفات باولي لحساب المتجهات الذاتية للف المغزلي فى اتجاه المحاور x و y و z دعنا نبدأ بالف المغزلي فى اتجاه المحور z : معادلة القيمة الذاتية ويكون لهذه المنظومة الخطية حلاً اذا تحقق الشرط ,و عليه فان فان القيم الذاتية هي (لاحظي انه يمكن ادخال المعامل الان بعدما حصلنا على القيم الذاتية نعوض فى المعادلة (1) بالقيمة اي ان و a يمكن ان تأخذ اي قيمة ولكن نسبة لان الدوال الذاتية يجب ان تكون مطبعة فاننا نختار a بحيث يكون للمتجه الذاتي طول يساوي الواحد (وهذا بديهي من الناحية الهندسية لان متجه الحالة هو عبارة عن شعاع فى الكرة التى لها نصف قطر يساوي الوحدة ) و هكذا نجد ان المتجه الذاتي للف مغزلي علوي فى اتجاه المحور z هو اما اذا عوضنا القيمة الذتية و شرط التطبيع يقود الى ان b=1 ولذلك فان اللف المغزلي فى الاتجاه السُفلي spin down هو و بنفس الطريقة يمكننا حساب المتجهات الذاتية فى اتجاه المحاور x و y وسوف نجد ان القيم الذاتية تساوي و بالتعويض فى معادلة القيمة الذاتية للف المغزلي فى اتجاه المحور x و شرط التطبيع يقود الى ان و اخيراًو بالتعويض فى معادلة القيمة الذاتية للف المغزلي فى اتجاه المحور y اذن فان فان المتجه الذاتي للف المغزلي فى محور y فى الاتجاه اعلى (+)واسفل (-) سوف يُعطى بـ هذا والله اعلم |
الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1) | |
انواع عرض الموضوع |
![]() |
![]() |
![]() |
|
|